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Preliminary Selection Contest 2015 — Hong Kong 

 

Outline of Solutions 

 

Answers: 

1. 4 2. 667 3. 6 4. 59 

5. 432 6. –54 7. 35 8. 3 55  

9. 6 10. 2 11. 15 12. 6 

13. 
3 3

4
 14. 1320 15. 4060224 16. 30 

17. 906 18. 
121

162
 19. 

11

9
 20. 31185 

 

Solutions: 

 

1. Suppose all lamps are turned on after n rounds. Then we have pressed the switches 5n  times in 

total. Note that each lamp should change state for an odd number of times. As there are 12 

lamps, the total number of times the lamps have changed state should be an even number. This 

forces n to be even. 

Clearly 2n  , since at most 5 2 10   lamps can be turned on in 2 rounds. On the other hand 

we can turn on all lamps in 4 rounds as follows: 

 Round 1 —  Press switches 1, 2, 3, 4, 5 

 Round 2 —  Press switches 6, 7, 8, 9, 10 

 Round 3 —  Press switches 7, 8, 9, 10, 11 

 Round 4 —  Press switches 7, 8, 9, 10, 12 

It follows that the answer is 4. 
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2. Note that BD is the perpendicular bisector of AC, while 

EG is the perpendicular bisector of CF. Thus the 

intersection of BD and EG, which we denote by O, is the 

circumcentre of ACF. 

 As 45OBG OGB    , OBG is isosceles. Since 

OH OC , we have 567BH CG  . It follows that 

1234 567 667CH    . 

 

3. As shown in the figure, let D be the point for which 

ABPD is an isosceles trapezium with AB // DP. Let 

also E be the point for which APED is a 

parallelogram, and F be the point such that A and F 

lie on different sides of BC and for which CBF is an 

equilateral triangle. 

Note that by our construction and the given 

condition AP BC , we have DE BD BF   as 

each of these three segments has the same length as 

AP. 

We have CBD CBA DBA    (180 54 24 ) 54 48        . Hence we get 

54 54 108BDE BDP PDE BDP DPA           

and 

60 48 108FBD FBC CBD        . 

These show E, D, B, F are consecutive vertices of a regular pentagon. It follows that C and E 

both lie on the perpendicular bisector of BF. Thus we have 
108

54
2

DEC PDE


      . 

Together with PC // DE, we see that PCED is an isosceles trapezium. In particular, we have 

CD PE AD  . Hence we have 

180 48
24 42

2
PAD DCA DCB ACB

 
          

and so 102 54 6CBP CBA PBD DBA PAD          . 

 

4. For convenience we define (1) 1f   and ( )( 2) ( 2) f nf n n    for odd positive integers n. Then 

the question asks for the last two digits of (19)f . 

Since (11)(13) 13 ff   is odd, we have (13) (13)(15) 15 ( 1) 1 3f ff        (mod 4). As 
(15)(17) 17 ff   and the unit digits of the powers of 7 (also powers of 17) follow the pattern 7, 
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9, 3, 1, 7, 9, 3, 1 which repeat every four terms, we conclude that the unit digit of (17)f  is the 

same as that of 317 , which is 3. 

Finally, if we look at the last two digits of the powers of 19,  we will see the pattern 19, 61, 59, 

21, 99, 81, 39, 41, 79, 01, 19, 61, which repeat every 10 terms. As (17)f  has unit digit 3, the 

last two digits of (17)(19) 19 ff   are the same as those of 319 , which are 59. 

Remark.  When solving the problem one naturally proceeds in the opposite direction, i.e. look 

for patterns of the last two digits of the powers of 19 first. 

 

5. Let r be the radius of the circle, and E, F be the points 

where the circle touches AD and BC respectively. 

Then PE PF r   and they are the heights of PAD 

and PBC from P. 

 Let h be the height of the trapezium. By considering 

the areas of PAD and PBC, we get 
15

2 2

PA h r
  

and 
20

2 2

PB h r
 . Thus 

3

4

PA

PB
 . Together with 

42AB  , we have 18PA  and 24PB  . It follows 

that 432PA PB  . 

 

6. Since a b  satisfies the given equation, we have 2( ) ( ) 0a b a a b b     . Rearranging gives 
2 2(3 1) 2 0b a b a    . This means b is a root to the equation 2 2(3 1) 2 0x a x a    . As a 

and b are integers, the discriminant 2 2 2(3 1) 4 2 6 1a a a a       must be a perfect square. 

 Let 2 26 1a a m   . Then 2 2( 3) 8a m    and so ( 3 )( 3 ) 8a m a m     . As the two terms 

3a m   and 3a m   have the same parity (they differ by 2m which is even), they can only 

be 2 and 4, or 2  and 4  (up to permutation). The corresponding possible values of a are 0 

and 6 . 

 When 0a  , the equation becomes 2 0b b  , giving 0b   or 1b   . When 6a   , the 

equation becomes 2 17 72 0b b    , giving 8b   or 9b  . The smallest possible value of ab  

is thus ( 6) 9 54    . 

 

7. Note that 
2 3

2 3

2 3

1 15 16 17 15 16 17

1 1 1 1 1 1
1 1 1

x x x
f

x x x x

x x x

 
      

      

. Hence we have 

2 3

2 2 3 3

1 1 1 1
( ) 15 16 17 15 16 17 14

1 1 1 1 1 1

x x x
f x f

x x x x x x x

      
                

            
. 
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 Since 
1

tan15
tan 75

 


, 
1

tan30
tan 60

 


 and tan 45 1  , the value of the expression in the 

question is 
15 16 17

14 14 (1) 14 14 35
2 2 2

f        . 

 

8. We use [XYZ] to denote the area of XYZ. Let K and L be the 

midpoints of AD and BC respectively. Then ~DKN DAC   

with side length ratio 1: 2  and so 
1

[ ] [ ]
4

DKN DAC . 

Similarly, we have 
1

[ ] [ ]
4

AMK ABD , 
1

[ ] [ ]
4

BLM BCA  

and 
1

[ ] [ ]
4

CNL CDB . Summing up these relations, we get 

1
[ ] [ ] [ ] [ ] [ ]

2
DKN AMK BLM CNL ABCD    . 

 It follows that [ ] 2[ ] 4[ ]ABCD KMLN NML  . By the mid-point theorem, we have 

1
4

2
NL BD NM    and 

1
3

2
ML AC  . Hence the height of NML from N has length 

2

2 3 55
4

2 2

 
  
 

. Thus 
3 55

[ ]
4

NML   and so  [ ] 3 55ABCD  . 

 

9. Let m be an integral root to the equation. Then we have 2 (4 2) (4 7) 0km k m k     , which 

can be rewritten as 2( 4 4) 2 7m m k m    , or 2( 2) 2 7m k m   . Hence 2m  divides 

2 7m , and so 2m  divides 2 7 2( 2) 3m m     as well. Thus m can only be –5, –3, –1 or 

1, which we plug in to 2( 2) 2 7m k m    one by one: 

 When 5m   , we get 9 3k    which gives no integer solution for k. 

 When 3m   , we get 1k  . 

 When 1m   , we get 5k  . 

 When 1m  , we get 9 9k   which again gives 1k  . 

The sum of all possible values of k is thus 1 5 6  . 

 

10. As AD is the internal bisector of A, point 'C  lies on AB. 

Since ' ~DBC ABC  , we have 'BC D ACB  . Together 

with 'AC D ACB  , we have ' 'BC D AC D   and so 

each of 'BC D , 'AC D  and ACB  is equal to 90. 
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Let BC x . Then 
2

AC
x

  and 2

2

4
AB x

x
  . Using the AM-GM inequality 2

c
y c

y
   

for positive numbers y and c, the perimeter of ABC  is  

2

2

2 4
2 2 2 4 2 2 2x x

x x
       . 

This minimum value is obtained when 
2

x
x

  and 2

2

4
x

x
 , i.e. when 2x   (which 

corresponds to 
2

2

4
2 2

2
AB    ). 

 

11. Let p be any prime factor of 1n . Then p is a prime factor of ( 1)(2 15)n n  , hence of 

( 5)n n  as well. Since ( 5) ( 1)( 4) 4n n n n     , we conclude that p divides 4 and so p  can 

only be 2 . In the same way, we can find that the only possible prime divisors of 5n  are 2  

and 5 . 

Let 1 2an   and 5 2 5b cn  . Then we have 2 4 2 5a b c  . Note that if 5a  , the left hand 

side is a multiple of 4 but not a multiple of 8. Hence we must have 2b   and the equation 

becomes 22 1 5a c   . As 5a  , this gives 5 1c   (mod 8), forcing c to be even. However, 

when c  is even, we have 22 5 1 ( 1) 1 0a c c        (mod 3), which is impossible. 

This means a can only be 0, 1, 2, 3 or 4. To find the greatest possible value of n, we set 4a   

to get 15n  . We can check that with this we have 4 2( 1)(2 15) 16 45 2 3 5n n        and 
2 2( 5) 15 20 2 3 5n n      , so 15 is indeed a possible value of n. It follows that the answer 

is 15. 

 

12. Since a is a root to ( ) 0g x  , we have 4 3 2 1 0a a a    . Using this relation, we get 
6 5 3 2 2 4 3 2 2 2( ) ( 1)( 1) 1 1f a a a a a a a a a a a a a a                . This also applies 

to b, c and d, and hence 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) 4f a f b f c f d a b c d a b c d            . 

Since a, b, c, d are roots to the equation 4 3 2 1 0x x x    , we have 1a b c d     and 

1ab ac ad bc bd cd       . It follows that 

2 2 2 2 2( ) 2( ) 3a b c d a b c d ab ac ad bc bd cd               

and so ( ) ( ) ( ) ( ) 3 1 4 6f a f b f c f d       . 

Remark.  In the first step we were trying to ‘simplify’ 6 5 3 2a a a a a     subject to the 

constraint 4 3 2 1 0a a a    . To do this we divided the former by the left hand side of the 

latter and ended up with 2 1a a  , which is in fact the remainder of the division. 
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13. Since A and B both lie on the straight line y x k  , we 

may  let ( , )A k    and ( , )B k   . Combining the 

equations of the straight line and the parabola, we get 
2 1 0x x k    . Its two roots are   and   since the two 

graphs meet at A and B. Hence we have 1     and 

1k   . It follows that 

2 2 22( ) 2( ) 8 10 8AB k           . 

 The height h from C to AB is 
1

2

k
. So the area of ABC 

is 2 21 1 5
(5 4 )(1 ) 2 2 (1 )

2 2 2 2

AB h
k k k k

  
      

 
. 

Finally, by the AM-GM inequality, we have 

3

2

5
2 (1 ) (1 )

5 272
2 (1 )

2 3 8

k k k

k k

  
              

  
. 

Equality holds when 
5

2 1
2

k k   , or 
1

2
k  . The maximum possible area of ABC is thus 

1 27 3 3
2

2 8 4
  .  

 

14. Note that for any 1 , 10a b  , the equation ax b  (mod 11) has exactly one solution (modulo 

11). This can be proved by techniques in number theory, or one can just check case by case — 

for example when 3a  , one can check that as x runs through 1 to 10, ax modulo 11 also run 

through 1 to 10 albeit in a different order (i.e. the remainders when 3, 6, 9, 12, 15, 18, 21, 24, 

27, 30 are divided by 11 are respectively 3, 6, 9, 1, 4, 7, 10, 2, 5, 8). Hence the equation has a 

unique solution for any b such that 1 10b  . 

Now let p, q, r, s be the numbers in the four boxes from left to right. If 11q   (i.e. 0q   (mod 

11), then regardless of the values of r and s, we can find a unique p which gives a correct 

answer as remarked above. As there are 10 choices for q and 11 choices for each of r and s, this 

leads to a total of 10 11 11 1210    different correct answers. 

When 11q  , then 11r   would lead to no solution. Otherwise, when 11r  , then there is a 

unique choice for s no matter what p is, as remarked above. As there are 11 choices for p and 

10 choices for r, there are 11 10 110   different correct answers in this case. 

Combining the two cases above, the answer is 1210 110 1320  . 
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15. We apply the formula 3 3 2 2( )( )a b a b a ab b      to 67210a   and 2015b   to get 
2016 672 1344 672 2 310 (10 2015)(10 2015 10 2015 ) 2015      . From this, we have 

2016 3
1344 672 2

672 672

10 2015
10 2015 10 2015

10 2015 10 2015

   
        

    
. As 32015  is much smaller than 

67210 2015 , the term inside the square bracket lies between 1  and 0. Hence, the integer is 

equal to 1344 672 210 2015 10 2015 1    , whose last 7 digits are the same as those of 22015 1 , 

which are 4060224. 

 

16. If d is odd, then there is one even term among any two consecutive terms. Hence there are at 

least 5 even numbers in the sequence, so at least one of them is not equal to 2 or –2, and thus 

its absolute value is not prime. This shows that d must be even. The same argument shows that 

d must be divisible by 3. 

Next we show that d is divisible by 5. If not, then there must be a multiple of 5 among any 5 

consecutive terms, so there must be two multiples of 5 in the sequence. If the absolute value of 

each term of the sequence is prime, then these multiples of 5 must be –5 and 5. This is not 

possible, because then the four terms between them must be –3, –1, 1 and 3, contradicting the 

condition that the absolute value of each term must be prime. 

It follows that d is at least 30. It is possible for d to be equal to 30. For example, we may take 

the arithmetic sequence –113, –83, –53, –23, 7, 37, 67, 97, 127, 157. 

Remark.  There is a mistake in the formulation of the question. It should ask for the minimum 

value of | |d  rather than that of d (otherwise d can be as negative as one desires), and it should 

specify that d is non-zero (otherwise the minimum value of | |d  must be zero since one can 

just take a sequence in which every term is equal to the same prime number). 

 

17. The 12 students can be divided into four groups of 3, each forming an equilateral triangle. For 

each group, there are 32 2 6   possible hat colours, thus making up a total of 46 1296  

colourings. However we need to subtract those cases in which there exist four students whose 

positions form a square are put on hats of the same colour. (The only possible regular polygons 

formed are equilateral triangles, squares, regular hexagons and the whole regular 12-gon. Once 

we settle the cases for the first two, i.e. ensuring no monochromatic equilateral triangle and 

monochromatic square, the last two cases need not be dealt with because there must be no 

monochromatic regular hexagon and monochromatic regular 12-gon.) 

So, among the 1296 colourings, how many are there in which there is at least one 

monochromatic square? Again, the 12 students can be divided into three groups of 4, each 

forming a square.  

 There are 42 3 162   colourings in which one particular square is monochromatic. 
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(There are 2 choices to fix a colour for the monochromatic square, say, red. The 

remaining 8 vertices can be paired up according to the original ‘triangle grouping’ at the 

beginning, each allowing 3 colour combinations as we cannot have both red.) 

 Now we count the number of colourings in which two particular squares are 

monochromatic. If these two monochromatic squares are of the same colour, all 

remaining vertices must be of the other colour. If they are of different colours, then each 

of the remaining vertices can be either red or blue. Hence there are 42 2 2 34    colour 

combinations in this case. 

 Finally, there are 32 2 6   colour combinations in which all three squares are 

monochromatic. (Note that they cannot all be of the same colour since we are restricting 

ourselves to the 1296 colourings in which there is no monochromatic triangle.) 

By inclusion-exclusion principle, 3 162 3 34 6 390      of the 1296 colourings have at least 

one monochromatic square. It follows that the answer is 1296 390 906  . 

 

18. Define ( ) (3 ) ( ) 1g x f x f x   . Then (1) g(3) g(9) g(27) g(81) 0g      . As ( )g x  is a 

polynomial with degree at most 5, we have ( ) ( 1)( 3)( 9)( 27)( 81)g x k x x x x x       for 

some constant k. Since (0) 1g   , we have 
1

1 3 9 27 81
k 

   
. In other words, we have 

( 1)( 3)( 9)( 27)( 81)
( )

1 3 9 27 81

x x x x x
g x

    


   
 and the coefficient of x is 

1 1 1 1 1

81 27 9 3 1
    . 

Note that if the coefficient of x in ( )f x  is c, then the same coefficient in (3 )f x  would be 3c 

and hence that in ( )g x  would be 2c. In other words, the coefficient of x in ( )f x  is half of that 

in ( )g x . Therefore the answer is 
1 1 1 1 1 1 121

2 81 27 9 3 1 162

 
     

 
. 

Remark.  Clearly a solution using brute force exists but it is extremely tedious. 

 

19. Let 24 9n nb a  . Then we have 
2 9

24

n
n

b
a


 , and the original recurrence relation becomes 

2 2

1 9 9 9

24 96 16 48

n n nb b b  
   , or 2 2

1(2 ) ( 3)n nb b   . As nb  is non-negative for all n, this yields 

12 3n nb b   . Rewrite this as 12( 3) 3n nb b    . Let 3n nc b  . Then we have 1

1

2
n nc c   and 

1 1 13 24 9 3 2c b a      . It follows that 
2

1

2
n n

c


 , 
2

1
3

2
n n

b


   and 
2 4

1 1 1

24 2 2
n n n

a


   , 

and so  1 2 3

1
1 1 1 1 1 1 4 1124 1

1 124 4 2 4 8 24 9
1 1

4 2

a a a
   

                 
     

. 
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Remark.  The constant 
9

48
 in the question should have been simplified to 

3

16
. 

 

20. We first divide the 8 men into 4 groups of two. Pick any man A and there are 7 ways to choose 

his groupmate B. Then pick any other man C and there are 5 ways to choose his groupmate D. 

Next pick any one of the remaining men E and there are 3 ways to choose his groupmate F. 

Finally the last two men G and H must be in the same group. Hence there are 7 5 3 105    

ways to group the men. Now we number the groups 1 to 4 (i.e. A and B are in Group 1, and so 

on), and let a, b, …, h be the wives of A, B, …, H respectively. We consider two cases. 

Case 1: The husbands of the two women in Group 1 are in the same group 

There are 3 ways to choose two women into Group 1. WLOG assume c and d are put into 

Group 1. Then the following groupings are possible according to the positions of a and b: 

 If a and b join the same group (3 possibilities), the grouping is fixed. (For example, if 

both a and b join Group 3, then since g and h cannot join Group 4 they are both forced to 

join Group 2.) Hence there are 3 arrangements in this case. 

 If a joins Group 3 and b joins Group 4 (or vice versa, leading to 2 possibilities), there are 

2 choices for each of the remaining place in Group 3 (for g or h) and Group 4 (for e or 

f ), giving a total of 2 2 2 8    arrangements in this case. 

 Otherwise, one of a and b joins Group 2, the other joins either Group 3 or Group 4 (4 

possibilities). Let’s say a joins Group 2 and b joins Group 3. Then e and f  must join 

Group 4 but g and h are free with 2 choices, giving 4 2 8   arrangements in this case. 

Altogether, there are 3 (3 8 8) 57     arrangements in Case 1. 

Case 2: The husbands of the two women in Group 1 are in different groups 

There are 6

2 3 12C    ways to choose two women into Group 1. WLOG assume c and e are put 

into Group 1. Then the following groupings are possible according to the positions of d and f : 

 If d and f  are in the same group, they must be in Group 4. Then a, b, g, h are free to join 

Group 2 and Group 3, so there are 4

2 6C   possible arrangements. 

 If neither d nor f  go to Group 4, then d and f  must be in Group 3 and Group 2 

respectively. Hence there are only 2 arrangements, with a and b joining Group 4 and g 

and h taking up the remaining two places in either way. 

 Otherwise there are 2 ways for one of d and f  to go to Group 4, say, d joins Group 4. 

Then f  must be in Group 2. There are 3 possible arrangements for g and h (both join 

Group 3, or choose one of them to join Group 3 and the other to join Group 2), and then 2 

possible arrangements for a and b. Hence there are totally 2 3 2 12    arrangements in 

this case. 
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Altogether, there are 12 (6 2 12) 240     arrangements in Case 2. 

Combining Cases 1 and 2, the answer is 105 (57 240) 31185   . 

 

 


