International Mathematical Olympiad
 Preliminary Selection Contest 2007 — Hong Kong

Outline of Solutions

Answers:

1. 667
2. 691
3. 88
4. 24
5. $\sqrt{5}-2$
6. 4
7. 4013
8. 366
9. 425
10. 4024036
11. 29
12. $\sqrt{5}-2$
13. 100
14. $\frac{85}{22}$
15. $\sqrt{3}-1$
16. 2550
17. 4681
18. 5π
19. 2048
20. 6
21. 576
22. $\frac{23}{177}$
23. $\sqrt{10}$
24. (Cancelled)
25. $2 \sqrt{2}-1$

Solutions:

1. We don't have to care about zeros as far as sum of digits is concerned, so we simply count the number of occurrences of the non-zero digits. The digit ' 3 ' occurs 18 times (10 as tens digits in $30,31, \ldots, 39$ and 8 as unit digits in $3,13, \ldots, 73$). The same is true for the digits ' 4 ', ' 5 '. ' 6 ' and ' 7 '. A little modification shows that the digits ' 1 ' and ' 2 ' each occurs 19 times. Finally the digit ' 8 ' occurs 11 times $(8,18,28, \ldots, 78,80,81,82$) and the digit ' 9 ' occurs 8 times $(9,19$, $29, \ldots, 79)$. Hence the answer is

$$
(3+4+5+6+7) \times 18+(1+2) \times 19+8 \times 11+9 \times 8=667 .
$$

2. Since $2007 \equiv 7(\bmod 1000)$, we need n for which $7 n \equiv 837(\bmod 1000)$. Noting that $7 \times 143=1001 \equiv 1(\bmod 1000)$, we multiply both sides of $7 n \equiv 837(\bmod 1000)$ by 143 to get $7 n(143) \equiv 837(143)(\bmod 1000)$, or $n \equiv 691(\bmod 1000)$. Hence the answer is 691 .

Alternative Solution. To find the smallest n for which $7 n \equiv 837(\bmod 1000)$, we look for the smallest multiple of 7 in the sequence $837,1837,2837, \ldots$ It turns out that 4837 is the first term divisible by 7 , and hence the answer is $4837 \div 7=691$.
3. Note that N is the mid-point of $B C$, so $N B=N C$ $=30$. By Pythagoras' Theorem, we have

$$
D N=\sqrt{50^{2}-30^{2}}=40 .
$$

Computing the area of $A B C D$ in two ways, we get

$$
60 \times 40=50 \times D M,
$$

which gives $D M=48$. It follows that

$$
D M+D N=48+40=88 .
$$

4. We resort to the formula 'Distance $=$ Speed \times Time'. Here 'distance' refers to the total length of the tunnel and the truck. When the speed is reduced by 20% and the time taken is increased by half, the distance must be increased by $(1-20 \%) \times(1+50 \%)-1=20 \%$. Hence, if we let the answer be $x \mathrm{~m}$, then we have $\frac{6+x}{12+x}=\frac{5}{6}$, which gives $x=24$.
5. Using $E F$ and $B C$ as bases, let the heights of $\triangle A E F$ and $\triangle E B C$ to be k times and $1-k$ times that of $\triangle A B C$ respectively. Let $[X Y Z]$ denote the area of $\triangle X Y Z$. Since $\triangle A E F \sim \triangle A B C$, we have $[A E F]=k^{2}$; since $\triangle E B C$ shares the same base as $\triangle A B C$, we have $[E B C]=1-k$. Hence we get $k^{2}=1-k$, and thus $k=\frac{-1+\sqrt{5}}{2}$ as $k>0$. It follows that

$$
[E F C]=1-k^{2}-(1-k)=\sqrt{5}-2 .
$$

6. Note that for positive real number x, we have $[x]>x-1$ and $x+\frac{1}{x} \geq 2$. Hence

$$
\begin{aligned}
{\left[\frac{p+q}{r}\right]+\left[\frac{q+r}{p}\right]+\left[\frac{r+p}{q}\right] } & >\left(\frac{p+q}{r}-1\right)+\left(\frac{q+r}{p}-1\right)+\left(\frac{r+p}{q}-1\right) \\
& =\left(\frac{p}{q}+\frac{q}{p}\right)+\left(\frac{q}{r}+\frac{r}{q}\right)+\left(\frac{r}{p}+\frac{p}{r}\right)-3 \\
& \geq 2+2+2-3 \\
& =3
\end{aligned}
$$

Since $\left[\frac{p+q}{r}\right]+\left[\frac{q+r}{p}\right]+\left[\frac{r+p}{q}\right]$ is an integer, it must be at least 4. Such minimum is attainable, for example when $p=6, q=8$ and $r=9$.
7. Note that $n=10^{2008}-1$. Hence

$$
n^{3}=\left(10^{2008}-1\right)^{3}=10^{6014}-3 \times 10^{4016}+3 \times 10^{2008}-1=\underbrace{999 \ldots 99}_{2007 \text { digits }} 7 \underbrace{000 \ldots 00}_{2007 \text { digits }} \underbrace{999 \ldots .99}_{2008 \text { digits }}
$$

and so the answer is $2007+2008=4015$.
8. Let $x+2 y=5 a$ and $x+y=3 b$. Solving for x, y in terms of a and b, we have $x=6 b-5 a$ and $y=5 a-3 b$. Also, $2 x+y=9 b-5 a$ and $7 x+5 y=27 b-10 a$. Hence the problem becomes minimising $27 b-10 a$ over non-negative integers a, b satisfying $6 b \geq 5 a \geq 3 b$ and $9 b-5 a \geq 99$.

Clearly standard linear programming techniques will solve the problem. We present a purely algebraic solution below. We first establish lower bounds on a and $b: 9 b \geq 5 a+99 \geq 3 b+99$ gives $b \geq 17$, while $5 a \geq 3 b \geq 3(17)$ gives $a \geq 11$. Next $9 b \geq 5 a+99 \geq 5(11)+99$ gives $b \geq 18$. We consider two cases.

- If $b=18$, then we have $5 a \leq 9 b-99=9(18)-99=63$, which gives $a \leq 12$ and hence $27 b-10 a \geq 27(18)-10(12)=366$. We check that $(a, b)=(12,18)$ satisfies all conditions with $27 b-10 a=366$.
- If $b>18$, then $27 b-10 a=9 b+2(9 b-5 a) \geq 9(19)+2(99)=369$.

Combining the two cases, we see that the answer is 366 .
9. We have $\overline{a b c}+2017=\overline{a b c}+\overline{a c b}+\overline{b a c}+\overline{b c a}+\overline{c a b}+\overline{c b a}=222(a+b+c)$. Since $\overline{a b c}$ is between 111 and $999,222(a+b+c)$ is between 2128 and 3016 , so that $a+b+c$ must be 10 , 11,12 or 13.

If $a+b+c=13$, then $\overline{a b c}=222 \times 13-2017=869$, leading to the contradiction $13=8+6+9$. Similar contradictions arise if $a+b+c$ equals 10 or 12 . Finally, $a+b+c=11$, then $\overline{a b c}=222 \times 11-2017=425$ and we check that $4+2+5$ is indeed equal to 11 . Hence the answer is 425 .
10. For a positive integer n, let $p(n)$ denote its greatest odd divisor. Then $n=2^{k} p(n)$ for some nonnegative integer k. Hence if $p(r)=p(s)$ for $r \neq s$, then one of r and s is at least twice the other. Because no number from 2007, 2008, ..., 4012 is at least twice another, $p(2007)$, $p(2008), \ldots, \quad p(4012)$ are 2006 distinct odd positive integers. Note further that each of them must be one of the 2006 odd numbers $1,3,5, \ldots, 4011$. It follows that they are precisely 1,3 , $5, \ldots, 4011$ up to permutation, and so the answer is

$$
1+3+5+\cdots+4011=2006^{2}=4024036
$$

11. We have $56=A_{1} A_{11}=A_{1} A_{2}+A_{2} A_{5}+A_{5} A_{8}+A_{8} A_{11} \geq A_{1} A_{2}+17+17+17$, so that $A_{1} A_{2} \leq 5$. On the other hand we have $A_{1} A_{2}=A_{1} A_{4}-A_{2} A_{4} \geq 17-12=5$, so we must have $A_{1} A_{2}=5$. Similarly $A_{10} A_{11}=5$.

Next we have $A_{2} A_{7}=A_{1} A_{4}+A_{4} A_{7}-A_{1} A_{2} \geq 17+17-5=29$ on one hand, and on the other hand we have $A_{2} A_{7}=A_{1} A_{11}-A_{1} A_{2}-A_{7} A_{10}-A_{10} A_{11} \leq 56-5-17-5=29$. It follows that $A_{2} A_{7}=29$.

Remark. The scenario in the question is indeed possible. One example is $A_{i} A_{i+1}=5,7,5,5,7$, $5,5,7,5,5$ for $i=1,2, \ldots, 10$.
12. Let A, B, C denote the corresponding interior angles of $\triangle A B C$. Noting that B, P, I, C are concyclic, we have

$$
\begin{aligned}
& \angle A P C=180^{\circ}-\angle C P B=180^{\circ}-\angle C I B=\frac{B}{2}+\frac{C}{2} \\
& \angle A C P=180^{\circ}-A-\angle A P C=\frac{B}{2}+\frac{C}{2}
\end{aligned}
$$

It follows that $A P=A C=2$ and hence $B P=\sqrt{5}-2$.
13. We have $3 M \geq\left(x_{1}+x_{2}\right)+\left(x_{2}+x_{3}\right)+\left(x_{4}+x_{5}\right)=300+x_{2} \geq 300$, so $M \geq 100$. This minimum is attainable when $x_{1}=x_{3}=x_{5}=100$ and $x_{2}=x_{4}=0$. Hence the answer is 100 .
14. By tangent properties, we have $P E=P B=2$ and we may let $Q D=Q E=x$. Then $Q A=9-x$ and $P Q=x+2$. Applying Pythagoras' Theorem in $\triangle A P Q$, we have $(9-x)^{2}+7^{2}=(x+2)^{2}$, which gives $x=\frac{63}{11}$.

Next observe that $C E P B$ is a cyclic quadrilateral, so we have $\angle M P A=\angle K C B=\angle K A B$, which means $M P=M A$. Likewise we have $M Q=M A$ and hence $A M=\frac{1}{2} P Q=\frac{1}{2}\left(\frac{63}{11}+2\right)=\frac{85}{22}$.
15. Note that the requirement of the question is satisfied if and only if both $A P$ and $B P$ are smaller than 2 , or equivalently, both $D P$ and $C P$ are smaller than $\sqrt{3}$. Hence if $D C$ is part of the number line with D representing 0 and C representing 2, then P must be between $2-\sqrt{3}$ and $\sqrt{3}$ in order to satisfy the condition, and the probability for this to happen is

$$
\frac{\sqrt{3}-(2-\sqrt{3})}{2}=\sqrt{3}-1
$$

16. Let d be the H.C.F. of a and c. Then we may write $a=d x$ and $c=d y$ where x, y are integers with an H.C.F. of 1. Then we have

$$
b=\frac{a c}{a+c}=\frac{d x y}{x+y} \text { and } d(x-y)=101 .
$$

Since x and y are relatively prime, the first equation shows that $x+y$ must divide d. Hence $d>1$ and we know from the second equation that $d=101$ and $x-y=1$. Since 101 is prime, we must then have $x+y=101$ and thus $x=51, y=50$ and $b=\frac{101 \times 50 \times 51}{101}=2550$.
17. The sum of the numbers on all balls is $a+b=2^{0}+2^{1}+\cdots+2^{14}=2^{15}-1=32767$. Since both a and b are divisible by d, so is $a+b=32767$. It is easy to see that d cannot be equal to 32767 . Since the prime factorisation of 32767 is $7 \times 31 \times 151$, the next largest possible candidate for d is $31 \times 151=4681$. This value of d is attainable; to see this, note that the binary representation of 4681 is 1001001001001 , so that if balls numbered 2^{k} are red if k is divisible by 3 and blue if otherwise, then we will have $a=4681, b=4681 \times 6$ and $d=4681$.
18. Being a quadratic equation in $\tan x$ with discriminant $8^{2}-4(3)(3)>0$, we see that there are two possible values of $\tan x$ (say $\tan x_{1}$ and $\tan x_{2}$) and hence four possible values of x in the range $0<x<2 \pi$. Since $\tan x_{1}+\tan x_{2}=-\frac{8}{3}$ and $\tan x_{1} \tan x_{2}=\frac{3}{3}=1$, both $\tan x_{1}$ and $\tan x_{2}$ are negative, so we have two possible values of x in the second quadrant and two in the fourth quadrant.
Consider x_{1}, x_{2} in the second quadrant satisfying the equation. From $\tan x_{1} \tan x_{2}=1$, we get $\tan x_{2}=\cot x_{1}=\tan \left(\frac{3 \pi}{2}-x_{1}\right)$. As $\frac{3 \pi}{2}-x_{1}$ is also in the second quadrant, we must have $x_{2}=\frac{3 \pi}{2}-x_{1}$. On the other hand, it is easy to see that the two possible values of x in the fourth quadrant are simply $x_{1}+\pi$ and $x_{2}+\pi$, as $\tan (x+\pi)=\tan x$ for all x (except at points where $\tan x$ is undefined). It follows that the answer is

$$
x_{1}+\left(\frac{3 \pi}{2}-x_{1}\right)+\left(x_{1}+\pi\right)+\left(\frac{3 \pi}{2}-x_{1}+\pi\right)=5 \pi .
$$

19. In an iterative manner, we can work out the graphs of f_{0}, f_{1} and f_{2} (together with the graph of $y=x$ in dotted line) in the range $0 \leq x \leq 1$, which explain everything:

Based on the pattern, it is easy to see (and work out an inductive proof) that the graph of f_{10} consist of $2^{10}=1024$ copies of ' V ', and hence $1024 \times 2=2048$ intersections with the line $y=x$. This gives 2048 as the answer.
20. Rewrite the equation as $x \sqrt{y}+y \sqrt{x}+\sqrt{2007 x y}=\sqrt{2007 x}+\sqrt{2007 y}+2007$, which becomes $\sqrt{x y}(\sqrt{x}+\sqrt{y}+\sqrt{2007})=\sqrt{2007}(\sqrt{x}+\sqrt{y}+\sqrt{2007})$ upon factorisation. Since the common factor $\sqrt{x}+\sqrt{y}+\sqrt{2007}$ is positive, we must have $x y=2007=3^{2} \times 223$. As 2007 has $(2+1)(1+1)=6$ positive factors, the answer is 6 .
21. Let n be such an integer. Note that n is divisible by 4950 if and only if it is divisible by each of 50, 9 and 11. As no two digits of n are the same, the last two digits of n must be 50 . Note also that n misses exactly one digit from 0 to 9 with every other digit occurring exactly once. As n is divisible by 9 and the unit digit of n is 0 , it is easy to check that the digit missing must be 9 , and hence the first 7 digits of n must be some permutation of $1,2,3,4,6,7,8$.

Let $n=\overline{A B C D E F G 50}$. Since n is divisible by 11 , we have $A+C+E+G \equiv B+D+F+5(\bmod$ 11). Also, the sum of A to G is $1+2+3+4+6+7+8=31$. It is easy to check that the only possibility is $A+C+E+G=18$ and $B+D+F=13$.

Now there are 4 ways to choose 3 digits from $\{1,2,3,4,6,7,8\}$ to make up a sum of 13 , namely, $\{8,4,1\},\{8,3,2\},\{7,4,2\}$ and $\{6,4,3\}$. Each of these gives rise to 3 ! choices for the ordered triple (B, D, F), and another 4 ! choices for the ordered quadruple (A, C, E, G). It follows that the answer is $4 \times 3!\times 4!=576$.
22. Note that S contains $3 \times 4 \times 5=60$ elements. Divide the points of S into 8 categories according to the parity of each coordinate. For instance, 'EEO' refers to the points of S whose x - and y coordinates are even and whose z-coordinate is odd (and similarly for the other combinations of E and O). There are $2 \times 2 \times 2=8$ points in the ' $E E O$ ' category. In a similar manner we can work out the size of the other categories:

Category	EEE	EEO	EOE	EOO	OEE	OEO	OOE	OOO
Size	12	8	12	8	6	4	6	4

Note further that two points form a favourable outcome if and only if they are from the same category. It follows that the required probability is

$$
\frac{C_{2}^{12}+C_{2}^{8}+C_{2}^{12}+C_{2}^{8}+C_{2}^{6}+C_{2}^{4}+C_{2}^{6}+C_{2}^{4}}{C_{2}^{60}}=\frac{23}{177} .
$$

23. Let A, B, P be the points $(0,-1),(1,2)$ and $\left(x, \frac{1}{x}\right)$ respectively. Then

$$
\begin{aligned}
\frac{\sqrt{x^{4}+x^{2}+2 x+1}+\sqrt{x^{4}-2 x^{3}+5 x^{2}-4 x+1}}{x} & =\sqrt{x^{2}+1+\frac{2}{x}+\frac{1}{x^{2}}}+\sqrt{x^{2}-2 x+5-\frac{4}{x}+\frac{1}{x^{2}}} \\
& =\sqrt{x^{2}+\left(\frac{1}{x}+1\right)^{2}}+\sqrt{(x-1)^{2}+\left(\frac{1}{x}-2\right)^{2}} \\
& =P A+P B \\
& \geq A B \\
& =\sqrt{(0-1)^{2}+(-1-2)^{2}} \\
& =\sqrt{10}
\end{aligned}
$$

Equality is possible if A, P, B are collinear, i.e. P is the intersection of the curve $x y=1$ with the straight line $A B$ in the first quadrant. One can find by simple computation that $x=\frac{1+\sqrt{13}}{6}$ in this case. Hence the answer is $\sqrt{10}$.
24. (This question was cancelled in the live paper. We present below a solution to find the sum of all possible values of S counting multiplicities, i.e. if a possible value of S is attained in two different situations, we shall sum that value twice.)

Let's also take into consideration the case where the number of red balls is a positive odd number, and in this case let T be the product of the numbers on all red balls. Let G be the sum of all possible values of S (counting multiplicities) and H be the sum of all possible values of T (counting multiplicities). Note that

$$
G+H=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \cdots\left(1+\frac{1}{1000}\right)-1=\frac{3}{2} \times \frac{4}{3} \times \cdots \times \frac{1001}{1000}-1=\frac{1001}{2}-1=\frac{999}{2}
$$

since each possible value of S or T arises from a choice of whether each ball is red or blue, and the term -1 in the end eliminates the case where all balls are blue which is not allowed by the question. In a similar manner, we have

$$
G-H=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{1000}\right)-1=\frac{1}{2} \times \frac{2}{3} \times \cdots \times \frac{999}{1000}-1=\frac{1}{1000}-1=-\frac{999}{1000}
$$

since each possible value of T (corresponding to a choice of an odd number of red balls) is evaluated -1 time in the above product while each possible value of S is evaluated +1 time. It follows that

$$
G=\frac{1}{2}\left(\frac{999}{2}-\frac{999}{1000}\right)=\frac{1}{2}\left(\frac{499500-999}{1000}\right)=\frac{498501}{2000} .
$$

25. Let $a=\sin x$ and $b=\cos x$. Then $a^{2}+b^{2}=1$ and we want to minimise

$$
\left|a+b+\frac{a}{b}+\frac{b}{a}+\frac{1}{b}+\frac{1}{a}\right|=\left|a+b+\frac{1+a+b}{a b}\right| .
$$

If we set $c=a+b$, then $a b=\frac{(a+b)^{2}-\left(a^{2}+b^{2}\right)}{2}=\frac{c^{2}-1}{2}$ and so the above quantity becomes

$$
\left|c+\frac{2(1+c)}{c^{2}-1}\right|=\left|c+\frac{2}{c-1}\right|=\left|(c-1)+\frac{2}{c-1}+1\right| .
$$

Let $f(c)$ denote this quantity. As $c=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right), c$ may take values between $-\sqrt{2}$ and $\sqrt{2}$. On the other hand, for positive real number r we have $r+\frac{2}{r}=\left(\sqrt{r}-\sqrt{\frac{2}{r}}\right)^{2}+2 \sqrt{2} \geq 2 \sqrt{2}$, with equality when $\sqrt{r}=\sqrt{\frac{2}{r}}$, i.e. $r=\sqrt{2}$. Hence

- if $c>1$, then $f(c) \geq 2 \sqrt{2}+1$;
- if $c<1$, then $f(c)=\left|1-\left[(1-c)+\frac{2}{1-c}\right]\right| \geq|1-2 \sqrt{2}|=2 \sqrt{2}-1$.

Equality in the second case holds if $1-c=\sqrt{2}$, i.e. if $c=1-\sqrt{2}$, which is possible since $-\sqrt{2}<1-\sqrt{2}<\sqrt{2}$. It follows that the answer is $2 \sqrt{2}-1$.

