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International Mathematical Olympiad 

Preliminary Selection Contest 2011 — Hong Kong 

 

Outline of Solutions 

 

Answers: 

1. 9900 2. 7046 3. 84 4. 1211101 

5. 100 6. 
2

9
 7. 

1

33
 8. 

11

16
 

9. 
4 3 3

4


 10. 6 11. 

16

5
 12. 

3

5
 

13. 
1

8
 14. 1005 15. 33 16. –3 

17. 22 18. 1764 19. 963090 20. 1729 

 

Solutions: 

 

1. Such fractions include 
1

10
3

, 
2

10
3

, 
1

11
3

, 
2

11
3

, …, 
1

99
3

, 
2

99
3

. They can be grouped into 90 

pairs, each with sum 110 (i.e. 
1 2

10 99 110
3 3
  , 

2 1
10 99 110

3 3
  , 

1 2
11 98 110

3 3
   and so 

on). Hence the answer is 110 90 9900  . 

 

2. The sum of 20 consecutive positive integers has unit digit equal to that of 2(0 1 9)   , 

which is 0. Hence ( 20) ( )f n f n   for all n. By direct computation, we have 

(1) (2) (20) 1 3 6 0 5 1 8 6 5 5 6 8 1 5 0 6 3 1 0

70

f f f                     



 

Similarly, we have (21) (22) (40) 70f f f    , (41) (42) (60) 70f f f     and so 

on, until (1981) (1982) (2000) 70f f f    . Altogether, we have 100 groups of 70. 

Finally, since 
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(2001) (2002) (2011) (1) (2) (11)

1 3 6 0 5 1 8 6 5 5 6

46

f f f f f f      
          


 
 

the answer is 70 100 46 7046   . 

 

3. We must have 
11

199 0
4

k
   and so 73k  . On the other hand, the product of digits of k must 

not exceed k (to see this, suppose k is an n-digit number with leftmost digit b; then 110nk b    

but the product of digits of k is at most 19bk  ), so we have 
11

199
4

k
k   and thus 113k  . 

Since 
11

199
4

k
 , being the product of digits of k, must be an integer, k is divisible by 4. Hence 

the product of digits of k is also even, i.e. 
11

4

k
 is odd. Therefore 4k   (mod 8), so the possible 

values of k include 76, 84, 92, 100 and 108. It is easy to check that only 84 works. 

 

4. Note that 414641 11  and 2121 11 . Hence 

8 4

4 2

4 2 2

2 2 2

2 2

1464101210001 14641 10 121 10 1

1100 1100 1

1100 2 1100 1 1100

(1100 1) 1100

(1100 1 1100)(1100 1 1100)

1211101 1208901

    

  

    

  

    
 

 

and so 1211101 is a possible answer. 

Remark.  It can be checked that the answer is unique. 

 

5. Note that there are 9 different letters, with ‘I’ and ‘M’ occurring twice. If the three letters are 

distinct, there are 9
3 84C   combinations. Otherwise, there are either two ‘I’s or two ‘M’s, plus 

one of the remaining 8 letters. There are 2 8 16   such combinations. Hence the answer is 

84 16 100  . 

 

6. We have 
2

1 9

4 8
y a x

    
 

. Note that a b c   is equal to the value of y when 1x  , i.e. 

2
1 9 9 18

1
4 8 16

a
a b c a

       
 

. Hence we need to look for the smallest positive a for 
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which 9 18a   is divisible by 16. This corresponds to 9 18 16a    , or 
2

9
a  . 

 

7. The four points form a rectangle if and only they are two pairs of diametrically opposite points. 
Hence among the 12

4 495C   possible outcomes, there are 6
2 15C   favourable outcomes (by 

choosing 2 out of the 6 pairs of diametrically opposite points). Therefore the answer is 
15 1

495 33
 . 

 

8. Let D be a point on BC such that DA DB . Then 
7

cos cos( )
8

DAC A B    . Let DB DA x  . 

Then 5DC x   and applying cosine law in 

DAC gives 

2 2 2 7
(5 ) 4 2( )(4)

8
x x x

      
 

, 

or 3x  , i.e. 3DA   and 2DC  . Applying 

cosine law in DAC again, we have 

2 2 24 2 3 11
cos

2(4)(2) 16
C

 
  . 

 

9. Let P = (0, a) and Q = (1, b), where each of a and b is randomly chosen from –1 to 1. Since 

each circle has radius 1, the two circles intersect if and only if 2 22 (1 0) ( )PQ b a     , or 

3 3b a    . 

On the Cartesian plane (with axes labelled a and b), 

the set of possible outcomes is the square bounded by 

the lines 1a    and 1b   . The set of favourable 

outcomes is the region of the square between the 

lines 3b a   and 3b a  , as shown. 

Consider the non-shaded triangular part of the square 

in the lower right hand corner. It is easy to find that 

the coordinates of the vertices of the triangle are 

(1,1 3) , (1, –1) and ( 3 1, 1)  . Thus it is a right-

angled isosceles triangle with leg 2 3  and whose 

area is  21 7 4 3
2 3

2 2


  . The same is true for 

the non-shaded triangular part of the square in the 

4 x 

x 5 x  

A B  

A 

C B 
D 

b 

a 
1 

1 

1  

1  

3b a   

3b a   
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upper left hand corner. Hence the required probability 

is 
 4 7 4 3 4 3 3

4 4

  
 . 

 

10. By the angle bisector theorem, 
9

7

BD AB

DC AC
   

and so 
9 9

8
9 7 2

BD   


. By the power chord 

theorem, 2BD BM BA   and so 
9

4
BM  . 

Finally, MN is parallel to BC since  

BDM MAD DAN DMN       . 

Hence we have 
AM MN

AB BC
 , or 

9
9

4
9 8

MN
 , 

so that 6MN  . 

 

11. Since the lengths of the altitudes are inversely proportional to the side lengths, the sides of the 

triangle are in ratio 
1 1 1

: : 4 : 3 : 2
3 4 6

 . Let the side lengths be 4k, 3k, 2k. Then the triangle has 

perimeter 9k and Heron’s formula asserts that it has area  

2 23 15
4.5(4.5 4)(4.5 3)(4.5 2)

4
k k    . 

Since the in-radius of a triangle is equal to twice the area divided by the perimeter, we have 

23 15
2 9 1

4
k k   , 

which gives 
6

15
k  . Let   be the angle opposite the shortest side and R be the radius of the 

circumcircle. Then the sine law and cosine law give 

2 22 2

2 2 2
2

sin 1 cos 3 4 2
1

2 3 4

k k k
R

  
  

   
   

 

and hence 
16

5
R  . 

 

B 
D 

C 

A 

N M 



 5

12. Since BPQC is a cyclic quadrilateral with C = 90, 
we have BPQ = 90. Also, PB PQ  since PCB = 

PCQ = 45. By Ptolemy’s Theorem, we have 

PB QC PQ BC PC BQ     . 

Since 2 2BQ PB PQ   and 1BC  , this 

simplifies to 1 2QC PC  . Let CQ y . Then 
1

2

y
PC


  and considering the area of CPQ gives 

1 1 6
sin 45

2 252

y
y

    
 

, or (5 8)(5 3) 0y y   , so 

that 
3

5
y  . 

 

13. It suffices to consider the last three digits. There are 8 7 6 336    possibilities, and we need 

to count how many of these are divisible by 8. To be divisible by 8, the unit digit must be 2, 4, 

6 or 8. We consider these cases one by one. 

 If the unit digit is 2, the tens digit must be 1, 3, 5 or 7 in order for the number to be 

divisible by 4. If the tens digit is 1 or 5, there are 3 choices of hundreds digit (e.g. if the 

tens digit is 1, then the hundreds digit must be 3, 5 or 7 as 312, 512 and 712 are divisible 

by 8); if the tens digit is 3 or 7, there are also 3 choices (namely, 4, 6, 8). Hence there are 

3 4 12   possibilities in this case. 

 If the unit digit is 4, the tens digit must be 2, 6 or 8, leading to 8 possibilities, namely, 624, 

824, 264, 864, 184, 384, 584, 784. 

 The case where the unit digit is 6 is essentially the same as the first case; 12 possibilities. 

 The case where the unit digit is 8 leads to 10 possibilities (it is slightly different from the 

second case), namely, 128, 328, 528, 728, 168, 368, 568, 768, 248 and 648. 

It follows that the answer is 
12 8 12 10 1

336 8

  
 . 

 

14. Consider any 4 consecutive cards. There can be at most one ‘3’ since there are at least three 

cards between any two ‘3’s. On the other hand, there is at least one ‘3’, for otherwise they have 

to be ‘1’s and ‘2’ subject to the required conditions, which can easily be seen to be impossible. 

In other words, there is exactly one ‘3’ among any 4 consecutive cards. 

Since 2011 4 502.75  , the number of ‘3’s must either be 502 or 503. Both bounds can be 

achieved (for the former case, consider 12131213…1213121; for the latter case, consider 

31213121…3121312). Hence 502 503 1005m M    . 

B 

C 

P 

A 

D Q 
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15. Divide the students into groups according to their surname. If there are k students in a group, 

then every student in the group will write 1k   for the question on surnames. The same is true 

if we divide the students into groups according to birthdays. 

Since each of 0, 1, 2, …, 10 has appeared as an answer, there is at least one group of each of 

the sizes 1, 2, 3, …, 11. As each student belongs to two groups (one ‘surname group’ and one 

‘birthday group’), the number of students must be at least (1 2 3 11) 2 33      . 

Finally, it is possible that there are 33 students when, for instance, the answers to the ‘surname 

question’ are all 2, 8, 9, 10 (i.e. there are four ‘surname groups’ with 3, 9, 10, 11 students) and 

the answers to the ‘birthday question’ are all 0, 1, 3, 4, 5, 6, 7 (i.e. there are seven ‘birthday 

groups’ with 1, 2, 4, 5, 6, 7, 8 students). Hence the answer is 33. 

 

16. Let m be the common root of 2 1 0x ax    and 2 0x bx c   . Clearly 0m  . Since 1c  , 

we must have a b  as 2 21 0m am m bm c      . This also gives 
1c

m
a b





.  Similarly, if 

n is the common root of 2 0x x a    and 2 0x cx b   , then 
1

a b
n

c





. It follows that 

1mn  . As m is a root of the equation 2 1 0x ax   , which has product of roots 1, n is also a 

root of this equation. 

Now n is a common root of the equations 2 1 0x ax    and 2 0x x a   , so we have 
2 21 0n an n n a      , which simplifies to ( 1)( 1) 0a n   . Clearly 1a  , for otherwise 

the equation 2 1 0x ax    will have no real root. Thus we must have 1n   and 2 0n n a    

gives 2a   . Since 1mn  , we have 1m   and 2 0m bm c    gives 1b c   . Thus 

3a b c    . 

 

17. By scaling we may assume 1AC   and 2AB  . Then 

the cosine law asserts that 5 4cos 68BC    . Since 
2 2BC AB

CP
BC


  and 

2 23

2

BC AC
CQ

BC


 , it can be 

shown that P is between B and Q. Since 
2 ( )AB BC BC CP BC BP    , we have 

AB PB

BC BA
 . 

Together with the common B, we have ABC ~ 

PBA and so BAP = BCA. It follows that 

180 112 68APQ ABP BAP ABP BCA            . 

On the other hand, we have 90AQP    since 

2 2 2 2 2 2 2 2 2(2 ) ( ) 4 2AB BQ AC BC CQ AC BC BC CQ CQ AC CQ           . 

Therefore 180 68 90 22PAQ       . 

A 

B C 
P Q 
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18. We consider two cases. 

Case 1: No green ball and blue ball are adjacent to each other 

In this case the red balls must either occupy the 1st, 3rd, 5th, …, 19th positions, or the 2nd, 

4th, 6th, …, 20th positions. In each case there are 10
5 252C   ways to arrange the green and 

blue balls. Hence there are altogether 252 2 504   ways in this case. 

Case 2: A green ball and a blue ball are adjacent to each other 

We place the ‘green-blue pair’ first. Since half of the total number of balls are red, and that no 

two red balls may be adjacent, the number of empty spaces before and after this pair must both 

be odd. Hence there are 9 choices of positions of this pair (2nd and 3rd, 4th and 5th, …., 18th 

and 19th). Of course there are 2 ways to arrange the two balls among the pair. After this pair is 

placed, the positions of the red balls are fixed (e.g. if the pair is placed in the 6th and 7th 

positions, then the red balls must be placed at the 1st, 3rd, 5th, 8th, 10th, …, 18th and 20th 

positions), and there are 8
4 70C   ways to arrange the remaining 4 green balls and 4 blue balls. 

Hence there are altogether 9 2 70 1260    ways in this case. 

Combining the two cases, the answer is 504 1260 1764  . 

 

19. There are 1000000 possible 6-digit passwords, and we shall count how many of these have at 

least three identical consecutive digits. Let A (resp. B, C, D) denote the set of passwords in 

which digits 1 to 3 (resp. 2 to 4, 3 to 5, 4 to 6) are identical. Then we have 
3

2

| | | | | | | | 10 10 10000

| | | | | | 10 10 1000

| | | | | | 10 10 100

| | | | 10 10 100

| | | | 10

| | 10

A B C D

A B B C C D

A C B D A D

A B C B C D

A B D A C D

A B C D

     

       
       
       
     
   

 

It follows that 10000 4 (1000 3 100 3) (100 2 10 2) 10

36910

A B C D             



 

and so the answer is 1000000 36910 963090  . 

 

20. Dividing the first equation by the second, we get 
3 2

3 2

5 3

5 4

x xy

y x y





. Dividing both the numerator 

and denominator on the left hand side by 3y , and writing t for 
x

y
, we have 

3

2

5 3

1 5 4

t t

t





, or  

 3 24 15 20 3 0t t t     ……(*) 



 8

Clearly, every solution 0 0( , )x y  to the original system gives rise to a solution 0
0

0

x
t

y
  to (*). 

Moreover, two different solutions 0 0( , )x y  and 0 0( ' , ' )x y  to the original system give rise to 

two different solutions 0
0

0

x
t

y
  and 0

0
0

'
'

'

x
t

y
  to (*). (This is because once 0t  is fixed, then so 

are 0x  and 0y ; for instance the first equation together with 0 0 0x t y  imply 30 3
0 0

21

5
y

t t



.) 

Writing i
i

i

x
t

y
 , we need to find the value of 1 2 3(11 )(11 )(11 )t t t   , where each it  is a 

different solution to (*), and hence 3 2
1 2 34 15 20 3 4( )( )( )t t t t t t t t t       . Consequently we 

have 
3 2

1 2 3

4(11) 15(11) 20(11) 3
(11 )(11 )(11 ) 1729

4
t t t

  
     . 

 


