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 International Mathematical Olympiad 

Preliminary Selection Contest 2017 — Hong Kong 

 

Outline of Solutions 

 

Answers: 

1. 1 2. 12 3. 
2016

2017
 4. 30000 

5. 3* 6. 597 7. 26 8. –7007 

9. 
64

5
 10. 

15 6 2

4


 11. 

23

128
 12. 

3 77

616
 

13. 
37

5
 14. 17 15. 30 16. 37 

17. 26  18. 315 19. 384 20. 
2015

8
 

 

*See the remark after the solution. 

 

Solutions: 

 

1. We consider the remainders when 0a , 1a , 2a , … are divided by 7. Note that when we compute 

the remainder when na  is divided by 7, it suffices to replace 2na   and 1na   by the respective 

remainders in the equation 2

2 1( )n n na a a    (e.g. once we know 3 5a   and 4 27 6a    

(mod 7), then we have 2 2

5 3 4 5 6 6a a a      (mod 7)). Thus it is easy to find that the 

remainders are respectively 1, 2, 5, 6, 6, 0, 6, 1, 0, 1, 1, 2, 5, 6, …, which repeat every 10 

terms. The remainder when 2017a  is divided by 7 is therefore the same as that when 7a  is 

divided by 7, which is 1 from the above list. 

 

2. From 2 2( 1) ( 1)x x y y x y     , we have 2 2x y  or 1 0x y   . The former is the same as 

x y  or x y  . Each of these equations represents a straight line. Therefore, we can draw the 

figure below. In particular, the lines 1 0x y    and x y   are parallel and hence they have 

no intersection. One easily counts that there are 12 regions in total. 
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3. Note that for each integer n greater than 1, the expression for ( )f n  consists of 2016 terms. We 

consider the contribution from each of these terms. Let 
kS  be the contribution from the term 

1
nk

 where 2 2017k  . Then 

2

2 3 4 2

1

1 1 1 1 1 1

1 1
1

k
kS

k k k k k k k

k

       
 



. 

 It follows that 

2 3 2017(2) (3) (4)

1 1 1 1 1
1

2 2 3 2016 2017

1
1

2017

2016

2017

f f f S S S      

     
           
     

 



 

 

4. We need to count the number of positive integer solutions to the equation 600a b c    such 

that a b c  . Then 1 200a  , and we note that 

• each even a (say, 2a k ) leads to 301 3k  solutions (e.g. when 100a  , there are 151 

solutions with ( , ) (100,400)b c  , (101, 399), …, (250,250); 

• each odd a (say, 2 1a k  ) leads to 302 3k  solutions (e.g. when 99a  , there are 152 

solutions with ( , ) (99,402)b c  , (100, 401), …, (250, 251). 

Thus the answer is thus 
100

1

100 101
(301 3 ) (302 3 ) 603 100 6 30000

2k

k k



        . 

 

5. Clearly 1n  . If 2n  , we may let 1

a
x

b
  and 2

c
x

d
  where a, b, c, d are positive integers. 

Then 3 3

1 2 1x x   implies 3 3 3( ) ( ) ( )ad bc bd  , contradicting Fermat’s Last Theorem (which 

says that when n is an integer greater than 2 the equation n n nx y z   has no positive integer 
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solution). Finally, as 3 3 3 33 4 5 6   , we have 

3 3 3
3 4 5

1
6 6 6

     
       

     
 and so 3n   is 

possible. It follows that the answer is 3. 

Remark.  In the live paper, the condition ‘less than 1’ was accidentally missing. That would 

make the problem trivial with answer 1. Both 1 and 3 were accepted as correct during the 

contest. 

 

6. First note that b cannot be 1, so there are 199 possible values for b. Now the equation can be 

rewritten as 

2017

log 2017log

log log

a a

b b

 
 

 
, i.e. 2017 2016(log ) 2017(log )(log )a a b . If log 0a  , 

which means 1a  , then any of the 199 values of b would work. If log 0a  , we can simplify 

the equation as 20162016log 2017(log )a b  . This equation has two solutions in a for each of 

the 199 possibilities for b. Hence the total number of solutions is 199 199 2 597   . 

 

7. As 30 2 3 5    and 3 33000 2 3 5   , each of x, y, z is of the form 2 3 5a b  , where each of 

a, b is 1, 2 or 3. Furthermore, among the three a’s chosen, one of them must be 1 and one of 

them must be 3, leading to 12 choices for the three a’s (including 6 permutations of (1,2,3), 3 

permutations of (1,1,3) and 3 permutations of (1,3,3)). By the same argument there are 12 

choices for the three b’s, leading to a total of 12 12 144   choices. 

However, because of the requirement x y z  , many of these have to be discarded. In most 

cases, 1 out of 6 will work because of the permutations of the values of x, y and z. In some 

cases two of x, y, z are equal (note that x, y, z cannot be all equal), leading to only 3 

permutations. There are 4 sets of ( , , )x y z  for which two of x, y, z are equal namely, 
1 1 3 3( , ) (2 3 5 ,2 3 5 )x z       and 3 1 1 3( , ) (2 3 5 ,2 3 5 )x z      , with y being equal to either x 

or z. Hence, among the 144 choices mentioned in the previous paragraph, the number of 

choices satisfying x y z   is 

144 3 4
4 26

6

 
  . 

 

8. The condition implies ( ) ( ) ( )f x x k g x   for some constant k. This gives 

4 3 2 4 3 2100 ( ) (1 ) (10 ) 10x x bx x c x a k x ak x k x k            . 

 By comparing the coefficient of x, we get 90k   . This implies 1 89a k    . Hence 

(1) (1 ) (1) (1 )( 12) 7007f k g k a       . 
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9. Suppose the extension of AB and CD meet at P. From 

ABD BCD  , we find that ~PBC PDB  . Then 

3

5

PB BC

PD DB
  . As 8PB PA AB PD    , we obtain 

20PD  . Using the similar triangles again, we have 
3

5

PC

PB
 . 

This implies 
36

5
PC  . Hence 

36 64
20

5 5
CD    . 

 

 

10.  Rotate P about B by 90  clockwise to obtain point Q. Then 

PBQ  is right-angled and isosceles. From BA BC , 

BP BQ  and 90ABP PBC CBQ    , we have 

ABP CBQ   . This implies 1CQ AP  . Also, we have 
2 2 2 2 22 2 8PQ BP BQ     . As 2 2 29CQ PQ PC   , 

PQC  is right-angled at Q. Hence we have 

45 90 135APB CQB       , and so it follows that 

2 2 21 2 2(1)(2)cos135 5 2 2AB       . The area of ABCD 

is thus 2( ) 3 15 6 2

2 4 4

AD BC AB
AB

  
  . 

 

11. If Ann is to win, then one the following cases must happen. 

 If the first 4 votes all go to Ann, she wins. The probability for this to happen is 
4

1 1

2 16
 . 

 Suppose exactly 3 out of the first 4 votes are given to Ann (with probability 4

3 4

1 1

2 4
C   ). 

 Ann wins if the next 2 votes are both go to her, with probability 
2

1 1 1

4 2 16
  . 

 If she gets exactly 1 vote among the next 2, she has to get both of the remaining 

votes to win, with probability 2

1 2 2

1 1 1 1

4 2 2 32
C
 

    
 

. 

 Suppose exactly 2 out of the first 4 votes are given to Ann (with probability 4

2 4

1 3

2 8
C   ). 

Then the remaining 4 votes should all go to Ann in order that she can win. The probability 

for this to happen is 
4

3 1 3

8 2 128
  . 

The answer is thus 
1 1 1 3 23

16 16 32 128 128
    . 
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12. Without loss of generality, assume 
1 2 nd d d   . Note that n is even and 1 11!j n jd d     for 

1
2

n
j  . For convenience, we write 11!m  . We find that 

1

1 1

1

2 2

1

21 1

( )( )

2

( )

1

j n j

j n j j n j

j n j

j n j

d d m

d m d m d m d m

d d m

m d d m m

m

 

   

 

 

 
 

   

 


  



 

 Hence the summands in the expression can form 
2

n
 pairs so that the sum of each pair is 

1

m
. As 

8 4 211! 2 3 5 7 11     , we have (8 1)(4 1)(2 1)(1 1)(1 1) 540n         and so the answer is 

540 3 77

6162 11!
 . 

 

13. If 1k  , we have 6x  ; if 1k   , we have 3x   , which should be rejected. 

When 1k   , the equation is quadratic and can be factorised as [( 1) 12][( 1) 6] 0k x k x     . 

The solutions are 
12

1k 
 and 

6

1k 
. Let 

12

1
m

k



 where m is a positive integer. Then 

12
1k

m
  . For 

6 3

1 6

m

k m


 
 to be a positive integer, the denominator must be positive and so 

m is at most 5. Furthermore, we need 6 m  to divide 3m, and we check that only m = 3, 4, 5 

work, and these corresponds to 3k  , 2 and 
7

5
 respectively. 

The answer is thus 
7 37

1 3 2
5 5

    . 

 

14. Note that two of the solutions come from ( ) 1Q x   while the other two come from ( ) 1Q x   . 

Let c be a positive integer solution to ( ) 1Q x  . Then the other root is a c   from the sum of 

roots. Also, we have ( ) 1c a c b     from the product of roots. Similarly, let d be a root to 

( ) 1Q x   . Then the other root is a d   and we have ( ) 1d a d b    . 

Using these to eliminate b, we obtain ( ) ( ) 2d a d c a c      , which implies 

( )( ) 2c d a c d    . Note that c, d and a c   are positive integers. Hence, we have 

( , ) (1,2)c d a c d    , (2,1), (–1,–2) or (–2,–1). This shows that a is odd. Also, from 

0a c   , we know that a is positive. 

 Let (2 1)a m    where 1m  . Since 
( ) ( )

2

c d a c d a
c

    
 , we check from the above 

four cases that c is either 1m  (in the first two cases) or 2m  (in the last two cases). In either 

case we have 2( ) 1 1b c a c m m       , and it can be checked that the solutions to 
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2( ) 1Q x   are always 2m , 1m , m and 1m . Since these are positive integers, we must 

have 3m  . Also, from 2 1 365b m m    , we get 19m  . It is easy to see that each of 3, 

4, …., 19 is a possible value of m, and each corresponds to one set of ( , )a b . The answer is thus 

17. 

 

15. Applying cosine formula on ADE  and ABC , we get 

2 2 2 2 2 2(21 ) 33 21
cos

2 (21 ) 2(33)(21)

n n n m
A

n n

    
 


. 

This simplifies to give 2 2 3 2(2223 ) 21 33 3 7 11n m      . 

From 21n AC   and 2 21n AD DE AE n     , we get 

9n   or 11. 

When 9n  , 2 22223 3 7 11m     has no integer solution. 

Thus we try 11n  , which gives 30m   as the only possible 

solution. 

 

16. Suppose there are n families in total and suppose there are m children. There are m choices for 

the best child, then 1n  choices for the best mother (since the best mother cannot be from the 

same family as the best child) and similarly 2n  choices for the best father. 

Hence we have ( 1)( 2) 7770m n n   . As 5m n , we have 37770 5 ( 1)( 2) 5n n n n    . This 

implies 12n  . Since ( 1)( 2)n n   is a factor of 7770 2 3 5 7 37     , it is easy to check 

that the only possibility is 16n  , which corresponds to 37m  . 

 

17. Consider the homothety with centre A and ratio 
1

2
. Then points B 

and C are mapped to the midpoints M and N of AB and AC 

respectively. Let the tangents at M and N to the circumcircle of 

AMN  intersect at a point F. Then F is the image of D under the 

homothety, and so F lies on BC by the given condition that A and 

D are equidistant from BC. 

Note that BMF ANM ACB    from tangent properties and 

the fact that MN and BC are parallel. This shows that A, M, F, C 

are concyclic. Hence we have 8BF BC BM BA    . 

Similarly, we have 18CF CB CN CA    . Adding these, we 

obtain 2 26BC BF BC CF CB     . Thus 26BC  . 
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18. For each iX , there are 4

2 6C   blue lines not passing through it. Hence, there are 5 6 30   red 

lines in total. They form 30

2 435C   ‘intersections’ (including intersections of parallel lines and 

counting multiplicities when three or more lines meet at a point). However, the following 

should be discounted. 

  For each iX , there are 6 red lines passing through it. The 6

2 15C   intersections formed 

from these lines coincide. Hence, 5 (15 1) 70    intersections need to be discounted. 

 For each of the 5

2 10C   blue lines, there are 3 red lines which are perpendicular to it. 

These 3 red lines are parallel and hence do not intersect. Thus 3

210 30C   intersections 

need to be discounted. 

 The three altitudes of a triangle are concurrent. There are 5

3 10C   triangles formed from 

the 5 points. Hence another 10 2 20   intersections should be discounted. 

The other intersections do not coincide in general. Hence, the maximum number of points of 

intersection is 435 70 30 20 315    . 

 

19. Let a, b, c be the lengths of BC, CA, AB respectively. Let 

r and s be the inradius and semi-perimeter of ABC . By 

considering the area of ABC, we have 

( )( )( )rs s s a s b s c    . Hence we have  

2

( )( )
r s

BD DC s b s c
s a

    


. 

Applying the extended sine law, we have 
sin

UV
AX

A
 . 

This gives 
4

sin
5

A  . As the triangle is acute, this 

implies 
sin

tan 12
2 1 cos

A A
r AE AE

A
   


. 

 Let H be the foot of altitude from A to BC and let Y be point of tangency of the two circles. 

Consider the homothety about Y that sends '  to  . As the tangent at A to '  is parallel to the 

tangent at D to  , the points A, Y, D are collinear. From 90XYD XHD    , points X, H, 

D, Y are concyclic. It follows that 2AX AH AY AD AE    . This gives 
224 192

15 5
AH   , 

and from 
2

a
rs AH   we get 

5

8

s
a  . It follows that 

2
2 8

12 384
3

r s
BD DC

s a
    


. 

 

20. Suppose n is a ‘good’ number with respect to a set X with k elements. Then both n and n k  

belong to X, so we must have 2k   and 2017k n  . The remaining 2k   elements can be 

chosen from the remaining 2015 elements. Thus there are 2015

2kC   such sets X, and this gives 
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2015 2015 2015 2015

0 1 2 2015 nC C C C      

sets for which n is ‘good’. Note that n is at most 2015. Summing over all n, the total number of 

‘good’ positive integers is 

2015 2015 2015 2015

0 1 2 20142015 2014 2013S C C C C     . 

Using the relation m m

r m rC C  , we get 

2015 2015 2015 2015

2015 2014 2013 12015 2014 2013S C C C C     . 

Adding these, we obtain 

2015 2015 2015 2015 2015

0 1 2 20152 2015( ) 2015 2S C C C C       . 

Hence, the required expected value is 
2014

2017 2017

2015 2 2015

2 2 8

S 
  . 


