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*See the remark after the solution.

Solutions:

1. We consider the remainders when a,, a,, a,, ... are divided by 7. Note that when we compute
the remainder when a, is divided by 7, it suffices to replace a, , and a,, by the respective
remainders in the equation a, =a, ,+(a,,)* (e.g. once we know a, =5 and a,=27=6
(mod 7), then we have a,=a,+a,”=5+6°=6 (mod 7)). Thus it is easy to find that the
remainders are respectively 1, 2, 5, 6, 6, 0,6, 1,0, 1, 1, 2, 5, 6, ..., which repeat every 10
terms. The remainder when a,,, is divided by 7 is therefore the same as that when a, is
divided by 7, which is 1 from the above list.

2. From x*(x+y+1)=y*(x+y+1), we have x* = y® or x+y+1=0. The former is the same as
X=Yy or x=-Yy. Each of these equations represents a straight line. Therefore, we can draw the
figure below. In particular, the lines x+y+1=0 and x=-y are parallel and hence they have

no intersection. One easily counts that there are 12 regions in total.



r4+y+1=0

Note that for each integer n greater than 1, the expression for f(n) consists of 2016 terms. We
C(i)nsider the contribution from each of these terms. Let S, be the contribution from the term
P where 2<k <2017. Then
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It follows that
f(2Q)+f@)+f(4)+--=S,+S,+---+S,,

(2 lee)

1
2016 2017

We need to count the number of positive integer solutions to the equation a+b+c =600 such
that a<b<c. Then 1<a <200, and we note that

e each even a (say, a=2k) leads to 301-3k solutions (e.g. when a =100, there are 151
solutions with (b, c) =(100,400), (101, 399), ..., (250,250);

e eachodd a (say, a=2k—1) leads to 302—3k solutions (e.g. when a =99, there are 152
solutions with (b, c) =(99,402), (100, 401), ..., (250, 251).

100
Thus the answer is thus » " (301—3k) + (302 —3k) = 603-100 - 6- 100-101

k=1

=30000.

Clearly n>1. If n=2, we may let x =% and X, :g where a, b, ¢, d are positive integers.

Then x*+x,° =1 implies (ad)® +(bc)® = (bd)*, contradicting Fermat’s Last Theorem (which
says that when n is an integer greater than 2 the equation x" +y" =z" has no positive integer



3 3 3
solution). Finally, as 3*+4°+5°=6>, we have (gj +(gj +(g) =1 and so n=3 is

possible. It follows that the answer is 3.

Remark. In the live paper, the condition ‘less than 1’ was accidentally missing. That would
make the problem trivial with answer 1. Both 1 and 3 were accepted as correct during the
contest.

First note that b cannot be 1, so there are 199 possible values for b. Now the equation can be
log ajzw _ 2017loga

, i.e. (loga)® =2017(loga)(logh)®* . If loga=0,
logb logb

rewritten as (

which means a =1, then any of the 199 values of b would work. If loga =0, we can simplify

the equation as Ioga:iz"lé/ZOlY(log b)***® . This equation has two solutions in a for each of
the 199 possibilities for b. Hence the total number of solutions is 199+199x2 =597 .

As 30=2x3x5 and 3000 =2°x3x5°, each of X, y, z is of the form 2% x3x5", where each of
a, b is 1, 2 or 3. Furthermore, among the three a’s chosen, one of them must be 1 and one of
them must be 3, leading to 12 choices for the three a’s (including 6 permutations of (1,2,3), 3
permutations of (1,1,3) and 3 permutations of (1,3,3)). By the same argument there are 12
choices for the three b’s, leading to a total of 12x12 =144 choices.

However, because of the requirement x <y <z, many of these have to be discarded. In most
cases, 1 out of 6 will work because of the permutations of the values of x, y and z. In some
cases two of x, y, z are equal (note that x, y, z cannot be all equal), leading to only 3
permutations. There are 4 sets of (x,y,z) for which two of x, y, z are equal namely,
(x,2) = (2' x3x5",2°x3x5%) and (x,z) =(2°x3x5", 2 x3x5%), with y being equal to either x
or z. Hence, among the 144 choices mentioned in the previous paragraph, the number of
choices satisfying x<y<z is

N 144 -3x4 _

6

4 26.

The condition implies f (x) =(x—k)g(x) for some constant k. This gives
x* 4+ x® +bx? +100x +¢ = x* + (a—k)x* + (1—ak)x* + (10— k)x—10k .

By comparing the coefficient of x, we get k=-90. This implies a=k+1=-89. Hence
f)=@A-k)g@®=@Q-k)(a+12) =-7007 .



10.

11.

Suppose the extension of AB and CD meet at P. From
Z/ABD=/BCD , we find that APBC ~APDB . Then

E:B—ng. As PB=PA-AB=PD-8 , we obtain
PD DB 5

. - . : PC 3
PD =20. Using the similar triangles again, we have Ezg'

This implies PC:%. Hence CD=20—3—;=6—54.

Rotate P about B by 90° clockwise to obtain point Q. Then
APBQ is right-angled and isosceles. From BA=BC |,

BP=BQ and ABP=90°-/PBC=/CBQ , we have
AABP = ACBQ . This implies CQ=AP =1. Also, we have
PQ’=BP*+BQ*=2°+2°=8 . As CQ*+PQ*=9=PC?,
APQC is right-angled at Q. Hence we have
Z/APB = /CQB =45°+90°=135°, and so it follows that
AB? =12 + 22 — 2(1)(2) c0s135° =5+ 2+/2 . The area of ABCD
(AD+BC)xAB _3 . :15+6\/§_
4 4

Bl

is thus

If Ann is to win, then one the following cases must happen.

e If the first 4 votes all go to Ann, she wins. The probability for this to happen is % = L
2

16’
e  Suppose exactly 3 out of the first 4 votes are given to Ann (with probability C; ><2—14 = %).
L . S AR |
—  Annwins if the next 2 votes are both go to her, with probability ZX? TS

— If she gets exactly 1 vote among the next 2, she has to get both of the remaining
L o1 1 1 1
votes to win, with probability =x| C*x= |x—==—.
P " ( ! 22] 22 32

e  Suppose exactly 2 out of the first 4 votes are given to Ann (with probability C; ><2—14 = g ).

Then the remaining 4 votes should all go to Ann in order that she can win. The probability

) .3 1 3
for this to happen is = x—=——.
PP 8 2* 128
1 3 23

The answer is thus i+i+—+—_—.
16 16 32 128 128



12.

13.

14.

Without loss of generality, assume d, <d, <---<d,. Note that nis even and d.d,, . =11! for

jon+l-j

1<j< g . For convenience, we write m=+/11!. We find that

1 N 1 _dj+d,+2m
d;+m d,;+m (d;+m)d,,;+m)
d;+d,,, ;+2m
T (d, +d,., )m-m’
1
m

Hence the summands in the expression can form g pairs so that the sum of each pair is l As
m

111=2°x3*x5* x7x11, we have n=(8+1)(4+1)(2+1)(1+1)(1+1) =540 and so the answer is

540 377

o1l 616

If k=1, wehave x=6;if k=-1, we have x=-3, which should be rejected.

When k = +1, the equation is quadratic and can be factorised as [(k +1)x—12][(k -1)x—6]=0.

The solutions are 12 and 6 . Let 12 =m where m is a positive integer. Then
k+1 k-1 kK+1
12 6 3m . : .
k=—-1. For K1 6m to be a positive integer, the denominator must be positive and so
m - -m

m is at most 5. Furthermore, we need 6—m to divide 3m, and we check that only m =3, 4, 5

work, and these corresponds to k =3, 2 and g respectively.

The answer is thus 1+3+ 2+g = %7

Note that two of the solutions come from Q(x) =1 while the other two come from Q(x) =—1.
Let ¢ be a positive integer solution to Q(x) =1. Then the other root is —a—c from the sum of
roots. Also, we have c(—a—c)=b-1 from the product of roots. Similarly, let d be a root to
Q(X) =-1. Then the other root is —a—d and we have d(-a—d)=b+1.

Using these to eliminate b, we obtain d(-a—-d)—c(-a—c)=2 , which implies
(c—d)(a+c+d)=2. Note that ¢, d and —a—c are positive integers. Hence, we have
(c—d,a+c+d)=(12), (2,1), (-1,-2) or (-2,-1). This shows that a is odd. Also, from
—a—c >0, we know that a is positive.

Let a=—(2m—1) where m>1. Since ¢ = (c—d)+(a+c+d)—a’ we check from the above

. . . 2 . .
four cases that c is either m+1 (in the first two cases) or m—2 (in the last two cases). In either
case we have b=c(-a—c)+1=m*—m-1, and it can be checked that the solutions to

5



15.

16.

17.

Q(x)* =1 are always m—2, m—1, m and m+1. Since these are positive integers, we must
have m>3. Also, from b=m*-m-1<365, we get m<19. It is easy to see that each of 3,
4, ...., 19 is a possible value of m, and each corresponds to one set of (a,b). The answer is thus
17.

Applying cosine formula on AADE and AABC, we get

n*+(21-n)’—n® _ os A 33 +21° —m?

Ccos
2n(21-n) 2(33)(21)
This simplifies to give n(2223—m?)=21>x33=3*x7°x11.
From n<AC =21 and 2n=AD+DE > AE=21-n, we get
n=9 or 11.

Whenn=9, 2223—m* =3x7%x11 has no integer solution. B C
Thus we try n=11, which gives m=30 as the only possible
solution.

Suppose there are n families in total and suppose there are m children. There are m choices for
the best child, then n—1 choices for the best mother (since the best mother cannot be from the
same family as the best child) and similarly n—2 choices for the best father.

Hence we have m(n—1)(n—2) =7770. As m<5n, we have 7770 <5n(n—1)(n—2) <5n°. This
implies n>12. Since (n—1)(n—2) is a factor of 7770=2x3x5x7x37, it is easy to check
that the only possibility is n=16, which corresponds to m=237.

Consider the homothety with centre A and ratio % Then points B

and C are mapped to the midpoints M and N of AB and AC
respectively. Let the tangents at M and N to the circumcircle of
AAMN intersect at a point F. Then F is the image of D under the
homothety, and so F lies on BC by the given condition that A and
D are equidistant from BC.

Note that #\BMF = Z/ANM = ZACB from tangent properties and
the fact that MN and BC are parallel. This shows that A, M, F, C
are concyclic. Hence we have BFxBC=BMxBA=8 .
Similarly, we have CFxCB=CNxCA=18. Adding these, we
obtain BC? = BF x BC +CF xCB = 26. Thus BC =+/26.




18.

19.

20.

For each X,, there are C, =6 blue lines not passing through it. Hence, there are 5x6=30 red
lines in total. They form C3° =435 ‘intersections’ (including intersections of parallel lines and
counting multiplicities when three or more lines meet at a point). However, the following
should be discounted.

e For each X,, there are 6 red lines passing through it. The C; =15 intersections formed
from these lines coincide. Hence, 5x(15—1) =70 intersections need to be discounted.

e  For each of the C; =10 blue lines, there are 3 red lines which are perpendicular to it.
These 3 red lines are parallel and hence do not intersect. Thus 10xCJ =30 intersections
need to be discounted.

e  The three altitudes of a triangle are concurrent. There are C? =10 triangles formed from
the 5 points. Hence another 10x2 =20 intersections should be discounted.

The other intersections do not coincide in general. Hence, the maximum number of points of
intersection is 435—70—30—20=315.

Let a, b, c be the lengths of BC, CA, AB respectively. Let
r and s be the inradius and semi-perimeter of AABC. By

considering the area of AABC, we have
rs= \/s(s—a)(s—b)(s—c) . Hence we have

2

BDx DC = (s—b)(s—¢) =,
s—a
: . uv
Applying the extended sine law, we have SnA- AX .
sin

This gives sin A:g. As the triangle is acute, this

implies r = AE tangz AE - sin A

=12.
1+cosA

Let H be the foot of altitude from A to BC and let Y be point of tangency of the two circles.
Consider the homothety about Y that sends @' t0 @ . As the tangentat Ato «" is parallel to the
tangent at D to w, the points A, Y, D are collinear. From £XYD = ~/XHD =90°, points X, H,

2
D, Y are concyclic. It follows that AX x AH = AY x AD = AE*. This gives AH :%:%,
2
and from rs:%AH we get a:%. It follows that BDx DC = rs =122><%:384.
s—a

Suppose n is a ‘good’ number with respect to a set X with k elements. Then both n and n+k
belong to X, so we must have k>2 and k <2017 —n. The remaining k —2 elements can be
chosen from the remaining 2015 elements. Thus there are C°° such sets X, and this gives

7



2015 2015 2015 2015
Cy TH+CTHCTT 4+ Cpie

sets for which n is ‘good’. Note that n is at most 2015. Summing over all n, the total number of
‘good’ positive integers is

S =2015C* +2014C**° +2013C2%° +---+CX:3 .
Using the relation C" =C_

m—r !

we get
S =2015C2° +2014C25 +2013C20%° +---+C*° .
Adding these, we obtain
2S = 2015(C2™° +C™ +C2° +...+ C2%) = 2015x 22,

S 2015x2%®* 2015

Hence, the required expected value is Ty g




