International Mathematical Olympiad
 Preliminary Selection Contest 2017 - Hong Kong

Outline of Solutions

Answers:

1. 1
2. 12
3. $\frac{2016}{2017}$
4. 30000
5. 3^{*}
6. 597
7. 26
8. -7007
9. $\frac{64}{5}$
10. $\frac{15+6 \sqrt{2}}{4}$
11. $\frac{23}{128}$
12. $\frac{3 \sqrt{77}}{616}$
13. $\frac{37}{5}$
14. 17
15. 30
16. 37
17. $\sqrt{26}$
18. 315
19. 384
20. $\frac{2015}{8}$
*See the remark after the solution.

Solutions:

1. We consider the remainders when $a_{0}, a_{1}, a_{2}, \ldots$ are divided by 7 . Note that when we compute the remainder when a_{n} is divided by 7 , it suffices to replace a_{n-2} and a_{n-1} by the respective remainders in the equation $a_{n}=a_{n-2}+\left(a_{n-1}\right)^{2}$ (e.g. once we know $a_{3}=5$ and $a_{4}=27 \equiv 6$ $(\bmod 7)$, then we have $\left.a_{5}=a_{3}+a_{4}^{2} \equiv 5+6^{2} \equiv 6(\bmod 7)\right)$. Thus it is easy to find that the remainders are respectively $1,2,5,6,6,0,6,1,0,1,1,2,5,6, \ldots$, which repeat every 10 terms. The remainder when a_{2017} is divided by 7 is therefore the same as that when a_{7} is divided by 7 , which is 1 from the above list.
2. From $x^{2}(x+y+1)=y^{2}(x+y+1)$, we have $x^{2}=y^{2}$ or $x+y+1=0$. The former is the same as $x=y$ or $x=-y$. Each of these equations represents a straight line. Therefore, we can draw the figure below. In particular, the lines $x+y+1=0$ and $x=-y$ are parallel and hence they have no intersection. One easily counts that there are 12 regions in total.

3. Note that for each integer n greater than 1 , the expression for $f(n)$ consists of 2016 terms. We consider the contribution from each of these terms. Let S_{k} be the contribution from the term $\frac{1}{k^{n}}$ where $2 \leq k \leq 2017$. Then

$$
S_{k}=\frac{1}{k^{2}}+\frac{1}{k^{3}}+\frac{1}{k^{4}}+\cdots=\frac{\frac{1}{k^{2}}}{1-\frac{1}{k}}=\frac{1}{k^{2}-k}=\frac{1}{k-1}-\frac{1}{k} .
$$

It follows that

$$
\begin{aligned}
f(2)+f(3)+f(4)+\cdots & =S_{2}+S_{3}+\cdots+S_{2017} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{2016}-\frac{1}{2017}\right) \\
& =1-\frac{1}{2017} \\
& =\frac{2016}{2017}
\end{aligned}
$$

4. We need to count the number of positive integer solutions to the equation $a+b+c=600$ such that $a \leq b \leq c$. Then $1 \leq a \leq 200$, and we note that

- each even a (say, $a=2 k$) leads to $301-3 k$ solutions (e.g. when $a=100$, there are 151 solutions with $(b, c)=(100,400),(101,399), \ldots,(250,250)$;
- each odd a (say, $a=2 k-1$) leads to $302-3 k$ solutions (e.g. when $a=99$, there are 152 solutions with $(b, c)=(99,402),(100,401), \ldots,(250,251)$.

Thus the answer is thus $\sum_{k=1}^{100}(301-3 k)+(302-3 k)=603 \cdot 100-6 \cdot \frac{100 \cdot 101}{2}=30000$.
5. Clearly $n>1$. If $n=2$, we may let $x_{1}=\frac{a}{b}$ and $x_{2}=\frac{c}{d}$ where a, b, c, d are positive integers. Then $x_{1}^{3}+x_{2}^{3}=1$ implies $(a d)^{3}+(b c)^{3}=(b d)^{3}$, contradicting Fermat's Last Theorem (which says that when n is an integer greater than 2 the equation $x^{n}+y^{n}=z^{n}$ has no positive integer
solution). Finally, as $3^{3}+4^{3}+5^{3}=6^{3}$, we have $\left(\frac{3}{6}\right)^{3}+\left(\frac{4}{6}\right)^{3}+\left(\frac{5}{6}\right)^{3}=1$ and so $n=3$ is possible. It follows that the answer is 3 .

Remark. In the live paper, the condition 'less than 1' was accidentally missing. That would make the problem trivial with answer 1. Both 1 and 3 were accepted as correct during the contest.
6. First note that b cannot be 1 , so there are 199 possible values for b. Now the equation can be rewritten as $\left(\frac{\log a}{\log b}\right)^{2017}=\frac{2017 \log a}{\log b}$, i.e. $(\log a)^{2017}=2017(\log a)(\log b)^{2016}$. If $\log a=0$, which means $a=1$, then any of the 199 values of b would work. If $\log a \neq 0$, we can simplify the equation as $\log a= \pm \sqrt[2016]{2017(\log b)^{2016}}$. This equation has two solutions in a for each of the 199 possibilities for b. Hence the total number of solutions is $199+199 \times 2=597$.
7. As $30=2 \times 3 \times 5$ and $3000=2^{3} \times 3 \times 5^{3}$, each of x, y, z is of the form $2^{a} \times 3 \times 5^{b}$, where each of a, b is 1,2 or 3 . Furthermore, among the three a 's chosen, one of them must be 1 and one of them must be 3 , leading to 12 choices for the three a 's (including 6 permutations of ($1,2,3$), 3 permutations of $(1,1,3)$ and 3 permutations of $(1,3,3))$. By the same argument there are 12 choices for the three b 's, leading to a total of $12 \times 12=144$ choices.

However, because of the requirement $x \leq y \leq z$, many of these have to be discarded. In most cases, 1 out of 6 will work because of the permutations of the values of x, y and z. In some cases two of x, y, z are equal (note that x, y, z cannot be all equal), leading to only 3 permutations. There are 4 sets of (x, y, z) for which two of x, y, z are equal namely, $(x, z)=\left(2^{1} \times 3 \times 5^{1}, 2^{3} \times 3 \times 5^{3}\right)$ and $(x, z)=\left(2^{3} \times 3 \times 5^{1}, 2^{1} \times 3 \times 5^{3}\right)$, with y being equal to either x or z. Hence, among the 144 choices mentioned in the previous paragraph, the number of choices satisfying $x \leq y \leq z$ is

$$
4+\frac{144-3 \times 4}{6}=26
$$

8. The condition implies $f(x)=(x-k) g(x)$ for some constant k. This gives

$$
x^{4}+x^{3}+b x^{2}+100 x+c=x^{4}+(a-k) x^{3}+(1-a k) x^{2}+(10-k) x-10 k .
$$

By comparing the coefficient of x, we get $k=-90$. This implies $a=k+1=-89$. Hence $f(1)=(1-k) g(1)=(1-k)(a+12)=-7007$.
9. Suppose the extension of $A B$ and $C D$ meet at P. From $\angle A B D=\angle B C D$, we find that $\triangle P B C \sim \triangle P D B$. Then $\frac{P B}{P D}=\frac{B C}{D B}=\frac{3}{5}$. As $P B=P A-A B=P D-8$, we obtain $P D=20$. Using the similar triangles again, we have $\frac{P C}{P B}=\frac{3}{5}$. This implies $P C=\frac{36}{5}$. Hence $C D=20-\frac{36}{5}=\frac{64}{5}$.

10. Rotate P about B by 90° clockwise to obtain point Q. Then $\triangle P B Q$ is right-angled and isosceles. From $B A=B C$, $B P=B Q$ and $\angle A B P=90^{\circ}-\angle P B C=\angle C B Q$, we have $\triangle A B P \cong \triangle C B Q$. This implies $C Q=A P=1$. Also, we have $P Q^{2}=B P^{2}+B Q^{2}=2^{2}+2^{2}=8$. As $C Q^{2}+P Q^{2}=9=P C^{2}$, $\triangle P Q C$ is right-angled at Q. Hence we have $\angle A P B=\angle C Q B=45^{\circ}+90^{\circ}=135^{\circ}$, and so it follows that $A B^{2}=1^{2}+2^{2}-2(1)(2) \cos 135^{\circ}=5+2 \sqrt{2}$. The area of $A B C D$ is thus $\frac{(A D+B C) \times A B}{2}=\frac{3}{4} A B^{2}=\frac{15+6 \sqrt{2}}{4}$.

11. If Ann is to win, then one the following cases must happen.

- If the first 4 votes all go to Ann, she wins. The probability for this to happen is $\frac{1}{2^{4}}=\frac{1}{16}$.
- Suppose exactly 3 out of the first 4 votes are given to Ann (with probability $C_{3}^{4} \times \frac{1}{2^{4}}=\frac{1}{4}$).
- Ann wins if the next 2 votes are both go to her, with probability $\frac{1}{4} \times \frac{1}{2^{2}}=\frac{1}{16}$.
- If she gets exactly 1 vote among the next 2 , she has to get both of the remaining votes to win, with probability $\frac{1}{4} \times\left(C_{1}^{2} \times \frac{1}{2^{2}}\right) \times \frac{1}{2^{2}}=\frac{1}{32}$.
- Suppose exactly 2 out of the first 4 votes are given to Ann (with probability $C_{2}^{4} \times \frac{1}{2^{4}}=\frac{3}{8}$). Then the remaining 4 votes should all go to Ann in order that she can win. The probability for this to happen is $\frac{3}{8} \times \frac{1}{2^{4}}=\frac{3}{128}$.

The answer is thus $\frac{1}{16}+\frac{1}{16}+\frac{1}{32}+\frac{3}{128}=\frac{23}{128}$.
12. Without loss of generality, assume $d_{1}<d_{2}<\cdots<d_{n}$. Note that n is even and $d_{j} d_{n+1-j}=11$! for $1 \leq j \leq \frac{n}{2}$. For convenience, we write $m=\sqrt{11!}$. We find that

$$
\begin{aligned}
\frac{1}{d_{j}+m}+\frac{1}{d_{n+1-j}+m} & =\frac{d_{j}+d_{n+1-j}+2 m}{\left(d_{j}+m\right)\left(d_{n+1-j}+m\right)} \\
& =\frac{d_{j}+d_{n+1-j}+2 m}{m^{2}+\left(d_{j}+d_{n+1-j}\right) m+m^{2}} \\
& =\frac{1}{m}
\end{aligned}
$$

Hence the summands in the expression can form $\frac{n}{2}$ pairs so that the sum of each pair is $\frac{1}{m}$. As $11!=2^{8} \times 3^{4} \times 5^{2} \times 7 \times 11$, we have $n=(8+1)(4+1)(2+1)(1+1)(1+1)=540$ and so the answer is $\frac{540}{2 \sqrt{11!}}=\frac{3 \sqrt{77}}{616}$.
13. If $k=1$, we have $x=6$; if $k=-1$, we have $x=-3$, which should be rejected.

When $k \neq \pm 1$, the equation is quadratic and can be factorised as $[(k+1) x-12][(k-1) x-6]=0$. The solutions are $\frac{12}{k+1}$ and $\frac{6}{k-1}$. Let $\frac{12}{k+1}=m$ where m is a positive integer. Then $k=\frac{12}{m}-1$. For $\frac{6}{k-1}=\frac{3 m}{6-m}$ to be a positive integer, the denominator must be positive and so m is at most 5 . Furthermore, we need $6-m$ to divide $3 m$, and we check that only $m=3,4,5$ work, and these corresponds to $k=3,2$ and $\frac{7}{5}$ respectively.

The answer is thus $1+3+2+\frac{7}{5}=\frac{37}{5}$.
14. Note that two of the solutions come from $Q(x)=1$ while the other two come from $Q(x)=-1$. Let c be a positive integer solution to $Q(x)=1$. Then the other root is $-a-c$ from the sum of roots. Also, we have $c(-a-c)=b-1$ from the product of roots. Similarly, let d be a root to $Q(x)=-1$. Then the other root is $-a-d$ and we have $d(-a-d)=b+1$.

Using these to eliminate b, we obtain $d(-a-d)-c(-a-c)=2$, which implies $(c-d)(a+c+d)=2$. Note that c, d and $-a-c$ are positive integers. Hence, we have $(c-d, a+c+d)=(1,2),(2,1),(-1,-2)$ or $(-2,-1)$. This shows that a is odd. Also, from $-a-c>0$, we know that a is positive.
Let $a=-(2 m-1)$ where $m \geq 1$. Since $c=\frac{(c-d)+(a+c+d)-a}{2}$, we check from the above four cases that c is either $m+1$ (in the first two cases) or $m-2$ (in the last two cases). In either case we have $b=c(-a-c)+1=m^{2}-m-1$, and it can be checked that the solutions to
$Q(x)^{2}=1$ are always $m-2, m-1, m$ and $m+1$. Since these are positive integers, we must have $m \geq 3$. Also, from $b=m^{2}-m-1 \leq 365$, we get $m \leq 19$. It is easy to see that each of 3 , $4, \ldots, 19$ is a possible value of m, and each corresponds to one set of (a, b). The answer is thus 17.
15. Applying cosine formula on $\triangle A D E$ and $\triangle A B C$, we get

$$
\frac{n^{2}+(21-n)^{2}-n^{2}}{2 n(21-n)}=\cos A=\frac{33^{2}+21^{2}-m^{2}}{2(33)(21)} .
$$

This simplifies to give $n\left(2223-m^{2}\right)=21^{2} \times 33=3^{3} \times 7^{2} \times 11$. From $nA E=21-n$, we get $n=9$ or 11 .

When $n=9,2223-m^{2}=3 \times 7^{2} \times 11$ has no integer solution.

Thus we try $n=11$, which gives $m=30$ as the only possible solution.
16. Suppose there are n families in total and suppose there are m children. There are m choices for the best child, then $n-1$ choices for the best mother (since the best mother cannot be from the same family as the best child) and similarly $n-2$ choices for the best father.

Hence we have $m(n-1)(n-2)=7770$. As $m \leq 5 n$, we have $7770 \leq 5 n(n-1)(n-2)<5 n^{3}$. This implies $n \geq 12$. Since $(n-1)(n-2)$ is a factor of $7770=2 \times 3 \times 5 \times 7 \times 37$, it is easy to check that the only possibility is $n=16$, which corresponds to $m=37$.
17. Consider the homothety with centre A and ratio $\frac{1}{2}$. Then points B and C are mapped to the midpoints M and N of $A B$ and $A C$ respectively. Let the tangents at M and N to the circumcircle of $\triangle A M N$ intersect at a point F. Then F is the image of D under the homothety, and so F lies on $B C$ by the given condition that A and D are equidistant from $B C$.

Note that $\angle B M F=\angle A N M=\angle A C B$ from tangent properties and the fact that $M N$ and $B C$ are parallel. This shows that A, M, F, C are concyclic. Hence we have $B F \times B C=B M \times B A=8$. Similarly, we have $C F \times C B=C N \times C A=18$. Adding these, we
 obtain $B C^{2}=B F \times B C+C F \times C B=26$. Thus $B C=\sqrt{26}$.
18. For each X_{i}, there are $C_{2}^{4}=6$ blue lines not passing through it. Hence, there are $5 \times 6=30$ red lines in total. They form $C_{2}^{30}=435$ 'intersections' (including intersections of parallel lines and counting multiplicities when three or more lines meet at a point). However, the following should be discounted.

- For each X_{i}, there are 6 red lines passing through it. The $C_{2}^{6}=15$ intersections formed from these lines coincide. Hence, $5 \times(15-1)=70$ intersections need to be discounted.
- For each of the $C_{2}^{5}=10$ blue lines, there are 3 red lines which are perpendicular to it. These 3 red lines are parallel and hence do not intersect. Thus $10 \times C_{2}^{3}=30$ intersections need to be discounted.
- The three altitudes of a triangle are concurrent. There are $C_{3}^{5}=10$ triangles formed from the 5 points. Hence another $10 \times 2=20$ intersections should be discounted.

The other intersections do not coincide in general. Hence, the maximum number of points of intersection is $435-70-30-20=315$.
19. Let a, b, c be the lengths of $B C, C A, A B$ respectively. Let r and s be the inradius and semi-perimeter of $\triangle A B C$. By considering the area of $\triangle A B C$, we have $r s=\sqrt{s(s-a)(s-b)(s-c)}$. Hence we have

$$
B D \times D C=(s-b)(s-c)=\frac{r^{2} s}{s-a} .
$$

Applying the extended sine law, we have $\frac{U V}{\sin A}=A X$. This gives $\sin A=\frac{4}{5}$. As the triangle is acute, this
 implies $r=A E \tan \frac{A}{2}=A E \cdot \frac{\sin A}{1+\cos A}=12$.

Let H be the foot of altitude from A to $B C$ and let Y be point of tangency of the two circles. Consider the homothety about Y that sends ω^{\prime} to ω. As the tangent at A to ω^{\prime} is parallel to the tangent at D to ω, the points A, Y, D are collinear. From $\angle X Y D=\angle X H D=90^{\circ}$, points X, H, D, Y are concyclic. It follows that $A X \times A H=A Y \times A D=A E^{2}$. This gives $A H=\frac{24^{2}}{15}=\frac{192}{5}$, and from $r s=\frac{a}{2} \cdot A H$ we get $a=\frac{5 s}{8}$. It follows that $B D \times D C=\frac{r^{2} s}{s-a}=12^{2} \times \frac{8}{3}=384$.
20. Suppose n is a 'good' number with respect to a set X with k elements. Then both n and $n+k$ belong to X, so we must have $k \geq 2$ and $k \leq 2017-n$. The remaining $k-2$ elements can be chosen from the remaining 2015 elements. Thus there are C_{k-2}^{2015} such sets X, and this gives

$$
C_{0}^{2015}+C_{1}^{2015}+C_{2}^{2015}+\cdots+C_{2015-n}^{2015}
$$

sets for which n is 'good'. Note that n is at most 2015. Summing over all n, the total number of 'good' positive integers is

$$
S=2015 C_{0}^{2015}+2014 C_{1}^{2015}+2013 C_{2}^{2015}+\cdots+C_{2014}^{2015} .
$$

Using the relation $C_{r}^{m}=C_{m-r}^{m}$, we get

$$
S=2015 C_{2015}^{2015}+2014 C_{2014}^{2015}+2013 C_{2013}^{2015}+\cdots+C_{1}^{2015}
$$

Adding these, we obtain

$$
2 S=2015\left(C_{0}^{2015}+C_{1}^{2015}+C_{2}^{2015}+\cdots+C_{2015}^{2015}\right)=2015 \times 2^{2015} .
$$

Hence, the required expected value is $\frac{S}{2^{2017}}=\frac{2015 \times 2^{2014}}{2^{2017}}=\frac{2015}{8}$.

