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Answers: 

1. 11101 2. 7560 3. 
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3


 4. 12 

5. 300 6. 6 15−  7. 160 8. 3834 

9. 7 2−  10. 2 5+  11. 14 :11 12. 
1

14
 

13. 
25

4
 14. 

9

4
 15. 74 16. 240 

17. 29702 18. 
55

3
 19. 13 20. 

1

420
 

 

Solutions: 

 

1. We have 2019 2019 4 2019 80761111 ( 10000) (10 ) 10 (mod11111) − = − = − . As 510 11111 9 1=  + , we 

have 2019 5 1615 16151111 10(10 ) 10(1) 11101 (mod11111) −  −  . That means the remainder is 

11101. 

Remark.  Obviously one can also find the answer by observing the pattern of remainders when 

1111, 
21111 , 

31111 , … are divided by 11111, although it would be more tedious — the 

remainders repeat every 10 terms. 

 

2. There are 4 red and 5 green cards. We first choose 5 out of the 9 positions to put the green 

cards, and there are 
9

5 126C =  ways to do so. (The remaining 4 positions must be for the red 

cards.) Note that the positions of the red cards are then uniquely determined as they must be 

arranged in ascending order from left to right. On the other hand, we can permute the 5 green 

cards in 5! 2 60 =  ways (since the two cards with the number 2 are indistinguishable). It 

follows that the answer is 126 60 7560 = . 
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3. The circle has centre (0,0)O  and radius 5. Let A be the 

point (6,8)  and B, C be the points where the tangents 

from A to the circle touch the circle. 

Since M is the midpoint of the chord PQ, we have 

90OMA =  . As we also have 90OBA OCA = =  , 

the circle with OA as diameter passes through B, M and 

C. Hence the locus of M is the minor arc of that circle 

from B to C. (It is easy to see that every point on the 

minor arc is a possible position of M.) 

Now we have 5OB = and 2 26 8 10OA= + = . As 2OA OB=  and 90OBA =  , we have 

30BAO =  . It follows that 60BAC =   and so the minor arc BC subtends an angle of 120  

at the centre. The length of the locus of M is thus 
120 10

10
360 3


  = . 

 

4. Let x y d− = . Setting x y d= +  in the given equation and simplifying, we get 
2 2 3(3 36) (3 36 ) (2 3456) 0d y d d y d− + − + − = . As 3 3 32 3456 2( 12 )d d− = − , we can take out 

the common factor 12d −  to get 2 2( 12)[3 3 2( 12 144)] 0d y dy d d− + + + + = . The second factor 

is a quadratic polynomial in y with discriminant  

2 2 2 2 2(3 ) 4 3 2( 12 144) 15 288 3456 6 9( 16) 1152 0d d d d d d d−   + + = − − − = − − + −  . 

Hence the quadratic factor can never be equal to 0, meaning that the only solution is 12d = . 

 

5. A positive integer is divisible by 36 if and only if it is both a multiple of 4 and 9. Since the last 

two digits are equal and they form multiple of 4, there are 3 possibilities (namely, 00, 44 and 

88). There are 10 choices for each of the hundreds and the thousands digits. Finally, for any 

choice of the last four digits, there is exactly one choice of the first digit (out of 1 to 9, since 

the first digit cannot be 0) which makes the sum of digits of the resulting integer (and hence 

the integer itself) divisible by 9. It follows that the answer is 3 10 10 300  = . 

 

6. As ~HBD CAD   (because 90HDB CDA = =   

and HBD = 90 – ACB = CAD), we have 

HD CD

BD AD
= , which implies 3(3 4) 21BD CD = + = . 

Together with 12BD CD+ = , the lengths BD and CD 

are the roots of the equation 2 12 21 0x x− + = . From 

AB AC , BD is the smaller root, i.e. 
212 12 4 21

6 15
2

BD
− − 

= = − . 
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7. Let 3 2( ) 2 3 4P x x x x= + + + . Note that ( ) ( )( )( )P x x x x  = − − − . Note also that 

4 2 21 (1 )( 1 ) (1 )( 1 )( )( )i i      − = − − − = − − − − − − . 

Similarly, we have 

4

4

1 (1 )( 1 )( )( )

1 (1 )( 1 )( )( )

i i

i i

    

    

− = − − − − − −

− = − − − − − −

 

Multiplying the three equations together, we have 

4 4 4( 1)( 1)( 1) (1) ( 1) ( ) ( ) 10 2 (2 2 ) (2 2 ) 160P P P i P i i i  − − − = − − =   +  − = . 

Remark.  The answer can also be found in the ‘traditional way’ by using the facts that 

2  + + = −  , 3  + + =   and 4 = − , but that will involve more tedious 

computations. 

 

8. Pick any one boy and one girl. There are 3 2 6 =  ways to assign the colours of their hats. 

Without loss of generality, suppose the boy is assigned a red hat and the girl is assigned a 

yellow hat. Now we try to assign hat to the remaining participants. 

⚫ If at least one boy has a blue hat, then all girls have yellow hats and so there are 
72 1 127− =  ways of assigning hats to the remaining boys (each may get a red or blue hat, 

but not all red). 

⚫ Similarly, if at least one girl has a blue hat, there are 92 1 511− =  possibilities. 

⚫ If nobody is assigned a blue hat, there is only 1 possibility (all boys have red hats and all 

girls have yellow hats). 

Hence the answer is 6 (127 511 1) 3834 + + = . 

 

9. Let the three roots be a d− , a and a d+ . Considering the sum of roots, we have 3 6a = − . 

Hence 2a = − , which is one of the roots to the equation. Setting 2x = −  in the equation thus 

gives 3 2( 2) 6( 2) 5( 2) 0k− + − + − + = , which implies 6k = − . The equation in the question thus 

becomes 3 26 5 6 0x x x+ + − = , or 2( 2)( 4 3) 0x x x+ + − = . The roots are 2x = −  and 

2 7x = −  . Hence the largest root is 7 2− . 
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10. Let AD x= . Then we have 2 2 2 1AB AD BD x= − = −  and 

2 2 2 3AC AB BC x= + = + . By the angle bisector theorem, we 

have 
AE AD

x
CE CD

= = . Hence 
2 3

1 1

x x x
AE AC

x x

+
= =

+ +
.   

Consider the circle   with BC as diameter. Since DB DC DE= = , 

  has centre D and passes through E. Furthermore, AB is a tangent 

to   since 90ABD =  . By the power chord theorem, we have 

2AB AE AC=  , i.e. 
2

2 ( 3)
1

( 1)

x x
x

x

+
− =

+
. This simplifies to 

2 4 1 0x x− − = , and the only positive solution is 2 5x = + . 

  

11. Extend AB meet HF to meet at S, and extend AC and DG to meet at T. By Menelaus’ Theorem, 

we have 1
AS BF CH

SB FC HA
  =  and 1

CT AD BG

TA DB GC
  = . These give 2

AS

SB
=  and 

5

8

CT

TA
=  

respectively, and we get : : : 2 :3: 2 :7AD DE EB BS =  and : : : 2 :3:1:10AH HK KC CT = . 

 

 

 

 

 

 

 

 

 Applying Menelaus’ theorem three more times, we get 

⚫ 1
DP TH AS

PT HA SD
  = , which gives 

6 84

49 686

DP

PT
= = ; 

⚫ 1
DQ TK AE

QT KA ED
  = , which gives 

3 165

11 605

DQ

QT
= = ; and 

⚫ 1
DG TC AB

GT CA BD
  = , which gives 

3 231

7 539

DG

GT
= = . 

Note that the fractions have been expanded so that the sum of numerator and denominator of 

each fraction is 770 (which is the L.C.M. of 6 49 55+ = , 3 11 14+ =  and 3 7 10+ = ). Hence if 

770DT k=  , then we have 84DP k=  and 231 165 66QG DG DQ k k k= − = − = . It follows that 

: 14:11DP QG = .
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Remark.  There are many alternative solutions to this problem. An obvious one is to use 

coordinate geometry (although quite an amount of computation will be involved). One may 

also use concepts from ‘mass point’ techniques. For example, to find :DP PG , one may assign 

a mass of 20 to A and split the masses at B and C. Using the ratios :AD DB  and :AH HC , the 

partial masses at B and C towards A will be 8 and 10 respectively. One can then use the ratio 

: :BF FG GC  to work out the partial masses at B towards C and C towards B to be 3.2 and 2.8 

respectively. Now considering DG, the masses at D and G will be 28 and 16 respectively, 

which shows that : 4 :7DP PG = . One can then find :DQ QG  in a similar way. 

 

12. There must be either 1 or 3 odd numbers in each row as well as each column in order for all 

row sums and column sums to be odd. Since there are 5 odd numbers in total, there must be a 

row containing 3 odd numbers. The other two rows each contains one odd number, and these 

two odd numbers must be in the same column in order for all column sums to be odd. 

In other words, there are 9 ways to choose the cells to place the odd numbers (3 choices for the 

row to contain 3 odd numbers, and then 3 choices for the column to place the remaining 2 odd 

numbers). As far as the required probability is concerned, only the parities of the numbers in 

each cell, rather than the numbers themselves, are relevant. As the number of ways of choosing 

5 cells for the odd numbers is 
9

5 126C = , the required probability is 
9 1

126 14
= . 

 

13. Let R denote the radius of the circle. By the extended sine 

formula, we have 
5

2
sin sin sin

AS ST
R

ACS ACS TCS
= = =

  
, 

i.e. 
sin

5
sin

TCS
ST

ACS


= 


. Using [XYZ] to denote the area of 

XYZ, we have 

1
2

1
2

sin5 [ ] sin

2 [ ] sin sin

QC CP TCSQP QCP QC TCS

AP ACP AC CP ACS AC ACS

    
= = = =

    
 

Note that 
4

2
2

QC QB

AC TB
= = =  since ~QCA QBT  . Hence we 

have 
sin 5

sin 4

TCS

ACS


=


 and so 

5 25
5

4 4
ST =  = . 

 



 6 

14. Let 22 4 3y x x x= + + + + . Note that 0y   (for otherwise 2 4 3 2x x x+ + = − − , and 

squaring both sides gives 2 24 3 4 4x x x x+ + = + +  which is impossible). We have 

2
2

2 2

1 1 2 4 3
2 4 3

2 4 3 2 4 3

x x x
x x x

y x x x x x x

+ − + +
=  = + − + +

+ + + + + − + +
. 

Hence the equation in the question becomes 5

5

32
31y

y
− = , i.e. 5 5( 32)( 1) 0y y− + = . It follows 

that y may be 2 or –1. 

⚫ If 22 4 3 2x x x+ + + + = , we have 2 24 3 ( )x x x+ + = − , which gives 
3

4
x = − . 

⚫ If 22 4 3 1x x x+ + + + = − , we have 2 24 3 ( 3)x x x+ + = − − , which gives 3x = − . 

We check that both solutions satisfy the original equation. The answer is thus 
3 9

( 3)
4 4

 
−  − = 
 

. 

 

15. Direct checking shows that values of n which do not work include 2, 3, 4, 5, 7, 11, 13, … We 

shall prove below that all primes are not possible values of n, while all composite numbers 

greater than 4 are possible values of n. 

⚫ We first show that prime numbers do not work. If p is prime, then the power of p in the 

prime factorisation of 2( 1)!p −  is 1p−  (since there are 1p−  multiples of p from 1 to 
2 1p − ) while that in the prime factorisation of ( !) pp  is p. It follows that 2( 1)!p −  is not a 

multiple of ( !) pp . 

⚫ Now let n be a composite number greater than 4. Note that 
2 2

1

( 1)! ( )! ( 1)!

( !) ( !)n n

n n n

n n n+

− −
=  , and 

we shall prove that each of 
2

1

( )!

( !)n

n

n +
 and 

( 1)!n

n

−
 is an integer. Indeed, the former is always 

an integer (for all positive integers n) since it is the number of ways of dividing 2n  

students into n groups of equal size (permute the students in 2( )!n  ways, let the first n 

students form a group, the next n students form another group, and so on, but within each 

group we divide by !n  as the permutation of the students does not affect the grouping, 

and finally divide by !n  as there are !n  ways to permute the groups). As for the latter, n 

must divide ( 1)!n−  because: 

➢ if n ab=  for distinct integers , 1a b  , then a and b are distinct terms in ( 1)!n− ; 

➢ otherwise 2n p=  for some odd prime p, so p and 2p  are distinct terms in ( 1)!n− . 

This completes the proof of the claim at the beginning of the solution. Among 1 to 100 we 

have to take away the 25 primes as well as the number 4. The answer is thus 100 25 1 74− − = . 
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16. Since f  is of degree 3, at most three of (2)f , (3)f , (4)f , (6)f , (7)f  and (8)f  can be 

equal to 16 (otherwise the polynomial ( ) ( ) 16g x f x= − , which is also of degree 3, would have 

more than three zeros, contradicting the Fundamental Theorem of Algebra). Similarly at most 

three of them can be equal to 16− . Hence we must have ( ) ( ) ( ) 16f a f b f c= = =  and 

( ) ( ) ( ) 16f p f q f r= = = − , where { , , , , , } {2,3,4,6,7,8}a b c p q r = . By the remainder theorem, 

we have ( ) ( )( )( ) 16f x k x a x b x c= − − − +  for some constant k (which is the leading coefficient 

of f ) and similarly ( ) ( )( )( ) 16f x k x p x q x r= − − − − . Hence we have 

( )( )( ) 16 ( )( )( ) 16k x a x b x c k x p x q x r− − − + = − − − −  

Comparing the coefficients of 2x  gives a b c p q r+ + = + + , while comparing the constant 

terms gives 32 ( )k abc pqr= − . As 2 3 4 6 7 8 30+ + + + + = , we either have { , , } {2,6,7}a b c =  

and { , , } {3,4,8}p q r = , or the other way round, from the former equation. The latter equation 

then gives 
8

3
k = − , or 

8

3
k =  in the case where { , , }a b c  and { , , }p q r  are swapped. In either 

case we have 

8
(0) ( 2)( 6)( 7) 16 240

3
f = − − − − + = . 

 

17. Draw the triangles one by one — the first triangle divides the plane into 2 regions, and the 

second, third, fourth, … triangle would add at most 6, 12, 18, … regions respectively. In 

general, when we draw the k-th triangle, at most 6( 1)k −  new regions can be created (because 

each of the 3 sides of the new triangle may intersect each of the 1k −  existing triangles, and 

each such intersection creates at most 2 more regions). Hence, after 100 triangles have been 

drawn, the number of regions is at most 2 (6 12 18 6 99) 29702+ + + + +  = .  

Remark.  The maximum value can be attained as long as every new triangle intersects every 

existing triangle at 6 points and no three sides are concurrent. This can be achieved by, for 

example, drawing an arbitrary triangle and rotating it by a small angle 99 times to create 100 

triangles, so that any two triangles intersect at 6 points. Whenever three sides are concurrent, 

we move one of the triangles involved a little bit to remove the concurrency. 

 

18. Let t xyz= . Then 3 3 3 2( ) ( 16)( 3)( 40) 27 568 1920t xyz xyz xyz xyz t t t= = − + + = + − − . Solving 

gives 24t =  or 
80

27
t = − . In the former case we have ( , , ) (2,3,4)x y z =  and 2 2 2 29x y z+ + = , 

while in the latter case we have 
8 1 10

( , , ) , ,
3 3 3

x y z
 

= − 
 

 and 2 2 2 55

3
x y z+ + = . One can check 

both satisfy the equations. Hence the smallest possible value of 2 2 2x y z+ +  is 
55

3
. 
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19. Using the half-angle formula 
1 cos sin

tan
2 sin 1 cos

  

 

−
= =

+
, the sine formula and the cosine 

formula, we have (with standard notations in trigonometry), 

2 2 2

2 2 2

2 2 2

2 2 2

1
2 1 cos sin 1 cos sin 2tan tan
3 2 2 sin 1 cos 1 cos sin

1
2

( 2 ) ( )( ) 17 6

( 2 ) ( )( ) 17 6

b c a

A C A C A C cbc

a b cA C C A a

ab

b bc c a a b c a b c a b c c

a ab b c a b c a b c a b c c

+ −
−

− −
= =  =  = 

+ −+ +
+

− − + + − + + − − + − +
= = = =

+ + − + − + + + + + +

  

Solving gives 13c = . 

 

20. Consider the centres of the eight faces of the regular octahedron. 

If we connect two adjacent faces by a line segment, we would 

get a cube, which we denote by ABCDHGFE as shown in the 

figure. The problem then becomes assigning the numbers 4, 

5, …, 11 to the vertices of the cube and finding the probability 

that the numbers assigned to each pair of adjacent vertices are 

relatively prime. 

We start with the number 6, and without loss of generality assume it is assigned to A. Among 

the remaining numbers, only 5, 7 and 11 are relatively prime to 6. Hence, in order to meet the 

condition of the question, the numbers assigned to B, D and E must be 5, 7 and 11 in some 

order. The probability for this to happen is 
7

3

1 1

35C
= . 

We must then allocate the numbers 4, 8, 9, 10 to C, F, G, H, and to meet the condition of the 

question 9 must be assigned to G (for otherwise there would be two adjacent even numbers), 

the probability of which is 
1

4
. 

Finally, 4, 8 and 10 are to be allocated to C, F, H, and the only restriction is that 10 must not be 

assigned to two vertices adjacent to the one assigned 5. The probability for this is 
1

3
. 

It follows that the answer is 
1 1 1 1

35 4 3 420
  = . 


