International Mathematical Olympiad

Preliminary Selection Contest 2004 - Hong Kong

Outline of Solutions

Answers:

1. 8
2. 10
3. $\frac{3}{2}-N$
4. 49894
5. $\frac{1}{2}-\frac{1}{2004!}$
6. $\frac{4011}{4010}$
7. 63°
8. 171
9. 5
10. 103
11. $\frac{3007}{2}$
12. 280616
13. $\pi+2$
14. 35
15. 603
16. 2475
17. 7
18. 540
19. $\sqrt{3}: 2$
20. 518656

Solutions:

1. A total of $C_{3}^{8}=56$ triangles can be formed by joining any three vertices of the cuboid. Among these, if any two vertices of a triangle are adjacent vertices of the cuboid, the triangle is rightangled. Otherwise, it is acute angled. To see this latter statement, note that if the dimensions of the cuboid are $p \times q \times r$, then we can find from the cosine law that the cosines of the angles of such a triangle will be equal to $\frac{p^{2}}{\left(p^{2}+q^{2}\right)\left(p^{2}+r^{2}\right)}, \frac{q^{2}}{\left(q^{2}+p^{2}\right)\left(q^{2}+r^{2}\right)}$ and $\frac{r^{2}}{\left(r^{2}+p^{2}\right)\left(r^{2}+q^{2}\right)}$, which are all positive.

For each fixed vertex (say A), we can form 6 triangles which are right-angled at A (two on each of the three faces incident to A). Thus the answer is $56-6 \times 8=8$.
2. Let the total weight of the stones be 100 . Then the weight of the three heaviest stones is 35 and that of the three lightest stones is $(100-35) \times \frac{5}{13}=25$. The remaining $N-6$ stones, of total weight $100-35-25=40$, has average weight between $\frac{25}{3}$ and $\frac{35}{3}$. Since $40 \div \frac{35}{3}>3$ and
$40 \div \frac{25}{3}<5$, we must have $N-6=4$, from which the answer $N=10$ follows.
3. From the first equation, we have $2 y=N+2-[x]$, which is an integer. Hence y is either an integer or midway between two integers. The same is true for x by looking at the second equation. Hence, either $[x]=x$ or $[x]=x-\frac{1}{2}$, and either $[y]=y$ or $[y]=y-\frac{1}{2}$.

If x and y are both integers, $[x]=x$ and $[y]=y$. Solving the equations, we get $x=\frac{4}{3}-N$ and $y=N+\frac{1}{3}$ which are not consistent with our original assumptions.

If x is an integer and y is midway between two integers, $[x]=x$ and $[y]=y-\frac{1}{2}$. Solving the equations, we have $x=\frac{5}{3}-N$ and $y=N+\frac{1}{6}$ which are not consistent with our original assumptions.
Similarly, if x is midway between two integers and y is an integer, we have $[x]=x-\frac{1}{2}$ and $[y]=y$. Solving the equations, we have $x=\frac{7}{6}-N$ and $y=N+\frac{2}{3}$ which are again not consistent with our original assumptions.
Finally, if x and y are both midway between two integers, we have $[x]=x-\frac{1}{2}$ and $[y]=y-\frac{1}{2}$. Solving the equations, we have $x=\frac{3}{2}-N$ and $y=N+\frac{1}{2}$. This gives the correct answer.
4. Let the answer be $\overline{a b c b a}$. Note that

$$
\overline{a b c b a}=10001 a+1010 b+100 c=101(99 a+10 b+c)+2 a-c
$$

For the number to be divisible by 101, we must have $2 a-c=0$. For the number to be largest, we may take $a=4, c=8$ and $b=9$. This gives the answer is 49894 .
5. Note that

$$
\frac{k+2}{k!+(k+1)!+(k+2)!}=\frac{1}{k!(k+2)}=\frac{k+1}{(k+2)!}=\frac{1}{(k+1)!}-\frac{1}{(k+2)!} .
$$

Hence

$$
\begin{aligned}
& \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\cdots+\frac{2004}{2002!+2003!+2004!} \\
= & \left(\frac{1}{2!}-\frac{1}{3!}\right)+\left(\frac{1}{3!}-\frac{1}{4!}\right)+\cdots+\left(\frac{1}{2003!}-\frac{1}{2004!}\right) \\
= & \frac{1}{2}-\frac{1}{2004!}
\end{aligned}
$$

6. Let $x=a+b, y=b+c$ and $z=c+a$. Then

$$
\frac{2004}{2005}=\frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)}=\frac{(z-y)(y-x)(x-z)}{x y z}
$$

and hence

$$
\begin{aligned}
\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a} & =\frac{x-y+z}{2 x}+\frac{y-z+x}{2 y}+\frac{z-x+y}{2 z} \\
& =\left(\frac{1}{2}-\frac{y-z}{2 x}\right)+\left(\frac{1}{2}-\frac{z-x}{2 y}\right)+\left(\frac{1}{2}-\frac{x-y}{2 z}\right) \\
& =\frac{3}{2}-\frac{1}{2}\left[\frac{(z-y)(y-x)(x-z)}{x y z}\right] \\
& =\frac{3}{2}-\frac{1}{2}\left(\frac{2004}{2005}\right) \\
& =\frac{4011}{4010}
\end{aligned}
$$

7. Draw E such that $A B C E$ is a parallelogram. Since $\angle A E C=\angle A B C=55^{\circ}$ and $\angle A D C=$ $180^{\circ}-31^{\circ}-24^{\circ}=125^{\circ}$, we have $\angle A E C+$ $\angle A D C=180^{\circ}$ and thus $A D C E$ is a cyclic quadrilateral. Now $E C=A B=D C$, so $\angle C D E=$ $\angle C E D=\angle C A D=31^{\circ}$. Considering $\triangle C D E$, we
 have $\angle A C E=180^{\circ}-31^{\circ}-31^{\circ}-24^{\circ}=94^{\circ}$. It follows that $\angle D A B=\angle B A C-31^{\circ}=\angle A C E-$ $31^{\circ}=94^{\circ}-31^{\circ}=63^{\circ}$.
(Alternatively, instead of drawing the point E, one can reflect B across $A C$ and proceed in essentially the same way.)
8. We have

$$
\begin{aligned}
999973 & =1000000-27 \\
& =100^{3}-3^{3} \\
& =(100-3)\left(100^{2}+100 \times 3+3^{2}\right) \\
& =97 \times 10309 \\
& =97 \times 13 \times 793 \\
& =97 \times 13^{2} \times 61
\end{aligned}
$$

and so the answer is $97+13+61=171$.
9. We first note that the five primes $5,11,17,23,29$ satisfy the conditions. So n is at least 5 .

Next we show that n cannot be greater than 5. Suppose there are six primes satisfying the above conditions. Let a be the smallest of the six primes and let d be the common difference of the resulting arithmetic sequence. Then d must be even, for if d is odd then exactly three of the six primes are even, which is not possible. Similarly, d must be divisible by 3 , for otherwise exactly 2 of the six primes are divisible by 3 , which is not possible.

Moreover, if d is not divisible by 5 , then at least one of the six primes must be divisible by 5 . Therefore 5 is one of the primes picked. But we have shown that d is divisible by 6 , so 5 is the smallest among the six primes. But then the largest of the six primes, $5+5 d$, is also divisible by 5 and is larger than 5 . This is absurd.

Hence d is divisible by 2,3 and 5 , hence divisible by 30 . So the largest of the 6 primes, which is $a+5 d$, must be larger than 150 , a contradiction. It follows that the answer is 5 .
10. By setting $p(0)=1$, we may write $S=p(000)+p(001)+p(002)+\cdots+p(999)-p(000)$. Since we are now computing the product of non-zero digits only, we may change all the 0 's to 1 's, i.e. $S=p(111)+p(111)+p(112)+\cdots+p(999)-p(111)$. Each term is the product of three numbers, and each multiplicand runs through $1,1,2,3,4,5,6,7,8,9$ (note that 1 occurs twice as all 0 's have been changed to 1 's). Hence we see that

$$
\begin{aligned}
S & =(1+1+2+3+\cdots+9) \times(1+1+2+3+\cdots+9) \times(1+1+2+3+\cdots+9)-1 \\
& =46^{3}-1 \\
& =(46-1) \times\left(46^{2}+46+1\right) \\
& =3^{2} \times 5 \times 2163 \\
& =3^{2} \times 5 \times 3 \times 7 \times 103
\end{aligned}
$$

It follows that the answer is 103.
11. Using $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$, we have

$$
\begin{aligned}
A & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2003}-\frac{1}{2004} \\
& =\left(1+\frac{1}{2}+\cdots+\frac{1}{2004}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2004}\right) \\
& =\left(1+\frac{1}{2}+\cdots+\frac{1}{2004}\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{1002}\right) \\
& =\frac{1}{1003}+\frac{1}{1004}+\cdots+\frac{1}{2004}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
2 A & =\left(\frac{1}{1003}+\frac{1}{2004}\right)+\left(\frac{1}{1004}+\frac{1}{2003}\right)+\cdots+\left(\frac{1}{2004}+\frac{1}{1003}\right) \\
& =\frac{3007}{1003 \times 2004}+\frac{3007}{1004 \times 2003}+\cdots+\frac{3007}{2004 \times 1003} \\
& =3007 B
\end{aligned}
$$

It follows that $\frac{A}{B}=\frac{3007}{2}$.
12. If $a \times b$ is odd, both digits are odd and we have $5 \times 5=25$ choices. If it is even, we have $9 \times 9-5 \times 5=56$ choices (note that both digits cannot be zero). The same is true for the quantities $c \times d$ and $e \times f$.

Now, for condition (b) to hold, either all three quantities $a \times b, c \times d$ and $e \times f$ are even, or exactly two of them are odd. Hence the answer is $56^{3}+3 \times 56 \times 25^{2}=280616$.
13. Observe that the graph is symmetric about the x-axis and the y-axis. Hence we need only consider the first quadrant. In the first quadrant, the equation of the graph can be written as $x^{2}+y^{2}=x+y$, or $\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{2}$, which is a circle passing through $(0,0),(1,0)$ and $(0,1)$. By symmetry, the whole graph can be constructed as shown.

Now the area bounded by the curve can be thought of as a square of side length $\sqrt{2}$ plus
 four semi-circles of diameter $\sqrt{2}$. Its area is

$$
(\sqrt{2})^{2}+4 \cdot \frac{1}{2} \cdot \pi\left(\frac{\sqrt{2}}{2}\right)^{2}=\pi+2
$$

14. Using the identity

$$
a^{3}+b^{3}+c^{3}-3 a b c=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right],
$$

we have

$$
\begin{aligned}
m^{3}+n^{3}+99 m n-33^{3} & =m^{3}+n^{3}+(-33)^{3}-3 m n(-33) \\
& =\frac{1}{2}(m+n-33)\left[(m-n)^{2}+(m+33)^{2}+(n+33)^{2}\right]
\end{aligned}
$$

For this expression to be equal to 0 , we either have $m+n=33$ or $m=n=-33$. The latter gives one solution $(-33,-33)$ while the former gives the 34 solutions $(0,33),(1,32), \ldots,(33,0)$. Hence the answer is 35 .
15. Let $f(n)$ be the number of significant figures when 2^{-n} is written in decimal notation. Then $f(n)=f(n+1)$ when n is 'lucky', and $f(n)+1=f(n+1)$ otherwise. Now $f(2)=2$, and we want to compute $f(2004)$. We first note that

$$
2^{-2004}=\frac{5^{2004}}{10^{2004}}
$$

so $f(2004)$ is equal to the number of digits of 5^{2004}. Now

$$
\log 5^{2004}=2004(1-\log 2) \approx 2004 \times(0.7-0.001)=1402.8-2.004=1400.796
$$

so 5^{2004} has 1401 digits. It follows that the number of lucky numbers less than 2004 is equal to $2004-1401=603$.
16. Let n be such a number. Since $3 n$ is divisible by 3 , the sum of the digits of $3 n$ is divisible by 3 . But the sum of the digits of $3 n$ is the same as the sum of the digits of n, so the sum of digits of n is divisible by 3 , i.e. n is divisible by 3 . As a result, $3 n$ is divisible by 9 , so the sum of digits of $3 n$ is divisible by 9 . Again, the sum of the digits of $3 n$ is the same as the sum of the digits of n, so the sum of digits of n is divisible by 9 , i.e. n is divisible by 9 .

Let $n=\overline{a b c d}$. Since n is to be divisible by both 9 and $11, a+b+c+d$ is divisible by 9 and $(a+c)-(b+d)$ is divisible by 11 . Considering the parities of $a+c$ and $b+d$ we see that $a+b+c+d$ has to be equal to 18 with $a+c=b+d=9$.

The rest is largely trial and error. Noting that a can be no larger than 3, we have the possibilities $(a, c)=(1,8) ;(2,7)$ or $(3,6)$. Considering the digits, the only possibilities for n
are $1287,1386,1485,2079,2475,2574,3465,3762$ and 3861 . Among these, we find that only $n=2475$ works as $3 n=7425$ in this case.
17. Note that $b=a\left(10^{n}+1\right)$, so $\frac{b}{a^{2}}=\frac{10^{n}+1}{a}$. Let this be an integer d. Noting that $10^{n-1} \leq a<10^{n}$ and $n>1$, we must have $1<d<11$. Since $10^{n}+1$ is not divisible by 2,3 and 5 , the only possible value of d is 7. Indeed, when $a=143$, we have $b=143143$ and $d=7$.
18. By the AM-GM inequality, $9 \tan ^{2} x^{\circ}+\cot ^{2} x^{\circ} \geq 2 \sqrt{\left(9 \tan ^{2} x^{\circ}\right)\left(\cot ^{2} x^{\circ}\right)}=6$. It follows that the minimum value of the right hand side is 1 . On the other hand, the maximum value of the left hand side is 1 . For equality to hold, both sides must be equal to 1 , and we must have $9 \tan ^{2} x^{\circ}=\cot ^{2} x^{\circ}\left(\right.$ which implies $\left.\tan x^{\circ}= \pm \frac{1}{\sqrt{3}}\right), \cos 12 x^{\circ}=1$ and $\sin 3 x^{\circ}=-1$.

For $\tan x^{\circ}= \pm \frac{1}{\sqrt{3}}$, the solutions are $x=30,150,210,330$.
For $\cos 12 x^{\circ}=1$, the solutions are $x=0,30,60, \ldots, 330,360$.
For $\sin 3 x^{\circ}=-1$, the solutions are $x=90,210,330$.
Therefore the equation has solutions $x=210,330$ and so the answer is $210+330=540$.
19. Let $[D E F]=2$.

Since $C D: D E=3: 2,[F C D]=3$.
Since $A B: B C=1: 2,[F B D]=1$.
Since $E F=F G,[G F D]=[D E F]=2$.
So $[G B F]=1=[F B D]$, i.e. $G B=B D$.
Together with $G F=F E, B F / / C E$.
Hence $A F: F D=A B: B C=1: 2$.
Let $G B=B D=x, A F=y, F D=2 y$.
Since $\angle C A D=\angle E G D, G A F B$ is a cyclic quadrilateral.
Thus $D B \times D G=D F \times D A$, i.e. $x(2 x)=2 y(3 y)$.
As a result we have $x: y=\sqrt{3}$.
It follows that $B D: D F=x: 2 y=\sqrt{3}: 2$.
20. The key observation is that $f(n)=n-g(n)$, where $g(n)$ is the number of 1 's in the binary representation of n. To see this, it suffices to check that for non-negative integers $a_{1}<a_{2}<\cdots<a_{k}$ and $n=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}$, we have

$$
\left[\frac{n}{2}\right]+\left[\frac{n}{2^{2}}\right]+\cdots+\left[\frac{n}{2^{a_{k}}}\right]=n-k .
$$

Such checking is straightforward.
Next we try to compute $g(0)+g(1)+\cdots+g(1023)$. Note that the binary representations of 0 and 1023 are respectively 0000000000 and 1111111111 , so as n runs through 0 to $1023, g(n)$ is equal to 5 'on average'. Since $g(0)=0$, we have

$$
g(1)+\cdots+g(1023)=5 \times 1024=5120 .
$$

Now we have

$$
\begin{aligned}
f(1)+f(2)+\cdots+f(1023) & =(1+2+\cdots+1023)-[g(1)+g(2)+\cdots+g(1023)] \\
& =\frac{1023 \times 1024}{2}-5120 \\
& =512 \times(1023-10) \\
& =518656
\end{aligned}
$$

