MC Key
1． B
2．D
3． A
4．B
5．E
6． C
7．D－
（Cancelled）
8．E
$-9 .--\boxminus$ （Please refer to solution）

10．B
11．C
（Cancelled）
12． A
13．C
14．A
15．E
16．A
17．B
18．C
19．D
20．E
1.

Without relative motion,
m_{1}, m_{2}, and M have the
same accelecitcon. \xrightarrow{F}

Along x-axis =

$$
\begin{array}{r}
\left(M+m_{1}+m_{2}\right) \ddot{x}=F=\text { (1) } \\
m_{1} \ddot{x}=T=\text { (2) }
\end{array}
$$

\qquad
\qquad
$\Rightarrow m_{1}, m_{2}$, and M have the
sane accelecotcon
Along x-axis $=$
$\left(M+m_{1}+m_{2}\right) \ddot{x}=F=$ (1)
$m_{1} \ddot{x}=T \quad$ - (2)

Along y-axis: $\quad T=H_{2} g$ - (3)
(1), (2) and (3) $\Rightarrow \quad\left(M+M_{1}+M_{2}\right) \quad M_{2} g=F$

Note that m_{2} cannot be accelerated horizontally unless the string is inclined at an angle to the vertical, so that it can provide a horizontal force to accelerate m_{2}.
$T_{x}=m_{2} a$
$T_{y}=m_{2} g$
$\Rightarrow T=\sqrt{T_{x}^{2}+T_{y}^{2}}=m_{2} \sqrt{g^{2}+a^{2}}$
$T=m_{1} a \Rightarrow m_{1} a=m_{2} \sqrt{g^{2}+a^{2}} \Rightarrow a=\frac{m_{2} g}{\sqrt{m_{1}^{2}-m_{2}^{2}}}$
$F=\left(M+m_{1}+m_{2}\right) a=\frac{\left(M+m_{1}+m_{2}\right) m_{2} g}{\sqrt{m_{1}^{2}-m_{2}^{2}}}$
If $m_{1} \gg m_{2}$, then
$F \approx \frac{\left(M+m_{1}+m_{2}\right) m_{2} g}{m_{1}}$
2.

$$
\begin{aligned}
& \left\{\begin{array}{l}
F=b_{v} \\
F_{v}=500 \mathrm{~W}
\end{array}\right. \\
& \left\{\begin{array}{l}
F=(5 \mathrm{~N} / \mathrm{m})(\mathrm{V}) \\
F v=500 \mathrm{~W}
\end{array}\right.
\end{aligned}
$$

$$
\text { (2) } \Rightarrow \quad v=\frac{500 \mathrm{~W}}{5 \mathrm{Ns} / \mathrm{m}(v)}
$$

3.

4.

$$
\frac{T_{\text {Eath }}^{2}}{1 A V^{3}}=\frac{T_{\text {spacecratt }}^{2}}{\left(\frac{1 A M+0.73 f A M}{2}\right)^{3}}
$$

$$
\Rightarrow T=0.8 \text { year }
$$

Xxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 xx
5.

$$
\begin{gathered}
\left\{\begin{array}{l}
T_{1} \cos \alpha+T_{2} \cos \beta-m g=0 \\
T_{1} \sin \alpha-T_{2} \sin \beta=0 \Rightarrow T_{1}=T_{2} \frac{\sin \beta}{\sin \alpha} \\
T_{2} \frac{\sin \beta}{\sin \alpha} \cos \alpha+T_{2} \cos \beta-m g=0 \\
T_{2}(\sin \beta \cos \alpha+\sin \alpha \cos \beta)=m g \sin \alpha \\
T_{2} \sin (\alpha+\beta)=m g \sin \alpha \\
T_{2}=\frac{m g \sin \alpha}{\sin (\alpha+\beta)} \\
T_{1}=\frac{m g \sin \alpha}{\sin (\alpha+\beta)} \frac{\sin \beta}{\sin \alpha} \\
=\frac{m g \frac{\sin \beta}{\sin (\alpha+\beta)}}{T_{1}} \\
\left\{\begin{array}{l}
T_{1}=m_{1} g \\
\Rightarrow m_{2} g \\
m_{2}
\end{array} \frac{T_{1}}{T_{2}}=\frac{m g \sin \beta / \sin (\alpha+\beta)}{m g \sin \alpha / \sin (\alpha+\beta)}\right. \\
\Rightarrow \sin \beta \\
\sin \alpha
\end{array}\right. \\
\end{gathered}
$$

7.

(i) Initial condition
(iii) After lower sphere collision from the ground

(ii) Just before collision with the ground

(iv) Just after elastic collision between spheres

Momentum: $m_{2} V_{2}-m_{1} V_{1}=m_{2} V_{2}^{\prime}+m_{1} v_{1}^{\prime}$

$$
\begin{gathered}
8 m_{1} v_{2}-m_{1} v_{1}=8 m_{1} v_{2}^{\prime}+m_{1} v_{1}^{\prime} \\
8 V_{2}-V_{1}=8 V_{2}^{\prime}+v_{1}^{\prime} \\
v_{1}^{\prime}=8 V_{2}-v_{1}-8 V_{2}^{\prime} \\
=7 V_{1}-8 V_{2}^{\prime}
\end{gathered}
$$

Energy: $\quad \frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{2} v_{2}^{2^{2}}+\frac{1}{2} m_{1} v_{1}^{2^{2}}$

$$
\begin{aligned}
& m_{1} v_{1}^{2}+8 m_{1} v_{2}^{2}=8 m_{1} v_{2}^{2}+m_{1} v_{1}^{2} \\
& V_{1}^{2}+8 V_{2}^{2}=8 V_{2}^{\prime 2}+V_{1}^{1^{2}} \\
& 9 v_{1}^{2}=8 v_{2}^{1^{2}}+\left(7 v_{1}-8 v_{2}^{1}\right)^{2} \\
& 72 V_{2}^{2}-112 V_{1} V_{2}^{1}+40 V_{1}^{2}=0 \\
& \Rightarrow \quad V_{2}^{\prime}=\frac{5}{9} V_{1}=\frac{5 \sqrt{2 g}(h=2 a)}{9} \text { or } V_{2}^{\prime}=V_{1} \text { (rejected) } \\
& V_{1}^{\prime}=\frac{23}{9} V_{1}=\frac{23}{9}=2 g(h-2 a) \\
& \text { Maximum Height }=5 a!+\frac{v_{1}^{\prime}}{2 g}=\frac{529}{81}(h-2 a)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
M \ddot{x}=N \sin \theta \\
M(\ddot{x}+\ddot{x} \cos \theta)=-m g \sin \theta \\
-m \ddot{x} \sin \theta=N-m g \cos \theta-3
\end{array}\right.
$$

(3)

$$
\begin{aligned}
\Rightarrow-m \ddot{x} \frac{\sqrt{2}}{2} & =N-m g \frac{\sqrt{2}}{2} \\
N & =\operatorname{mg} \frac{\sqrt{2}}{2}-m \ddot{X} \frac{\sqrt{2}}{2}
\end{aligned}
$$

Sub. into (1),

$$
\begin{aligned}
& M \ddot{x}=\frac{N \sqrt{2}}{2} \\
&=\left(m g \frac{\sqrt{2}}{2}-m \ddot{x} \frac{\sqrt{2}}{2}\right) \frac{\sqrt{2}}{2} \\
&=\frac{m g}{2}-\frac{m \ddot{x}}{2} \\
& \Rightarrow \ddot{x}=\frac{m g}{m+2 M}
\end{aligned}
$$

Let $a_{n}=$ downward acceleration of the nth pulley
Let $T_{n}=$ tension of the string hanging down from the nth pulley
Consider the forces acting on the second pulley. Since it is massless, $T_{2}=\frac{T_{1}}{2}$
Similarly, we can prove $T_{n}=\frac{T_{n-1}}{2}=\frac{T_{1}}{2^{n-1}}$
Consider the forces acting on the first mass. Using Newton's law, $T_{1}-m g=m a_{1} \Rightarrow T_{1}=m g+m a_{2}$

Consider the forces acting on the second mass. Its acceleration in the lab frame is $a_{3}-a_{2}$. Using Newton's law,
$T_{2}-\frac{m}{2} g=\frac{m}{2}\left(a_{3}-a_{2}\right) \Rightarrow \frac{T_{1}}{2}=\frac{m}{2}\left(g+a_{3}-a_{2}\right) \Rightarrow T_{1}=m\left(g+a_{3}-a_{2}\right)$
In general, consider the forces acting on the k th mass. Its acceleration in the lab frame is $a_{k+1}-a_{k}$.
Using Newton's law,
$T_{k}-\frac{m}{2^{k-1}} g=\frac{m}{2^{k-1}}\left(a_{k+1}-a_{k}\right) \Rightarrow \frac{T_{1}}{2^{k-1}}=\frac{m}{2^{k-1}}\left(g+a_{k+1}-a_{k}\right) \Rightarrow T_{1}=m\left(g+a_{k+1}-a_{k}\right)$
This equation holds up to $k=n-1$.
Consider the forces acting on the last pair of masses (that is, those hanging on the nth pulley). Their acceleration in the lab frame is a_{n} downward. Using Newton's law, $m g-T_{n}=m a_{n} \Rightarrow \frac{T_{1}}{2^{n-1}}=m g-m a_{n}$

Adding the n equations above,
$\left(n-1+\frac{1}{2^{n-1}}\right) T_{1}=n m g+m\left(a_{2}-0\right)+m\left(a_{3}-a_{2}\right)+\cdots+m\left(a_{n}-a_{n-1}\right)+m\left(0-a_{n}\right)=n m g$
Note that in summing the acceleration terms, the first term of each bracket cancels the second term of the following bracket.
$T_{1}=\frac{n m g}{n-1+2^{1-n}}$
The acceleration of the mass hanging from the $1^{\text {st }}$ pulley $=a_{2}=\frac{T_{1}}{m}-g=\frac{1-2^{1-n}}{n-1+2^{1-n}} g \rightarrow 0$
The acceleration of the lowest mass $=a_{n}=g-\frac{T_{1}}{m 2^{n-1}}=\frac{(n-1)\left(1-2^{1-n}\right)}{n-1+2^{1-n}} g \rightarrow g$

Radius of the upper

$$
\begin{aligned}
\text { circe } & =R-R \\
& =R\left(\frac{1}{\cos \theta}-1\right)
\end{aligned}
$$

Mass of the upper circle

$$
=6 \pi R^{2}\left(\frac{1}{\cos \theta} 1\right)^{2}
$$

Keeping staterracy:

$$
\begin{aligned}
2 N \sin \theta & =\sigma \pi R^{2}\left(\frac{1}{\cos \theta}-1\right)^{2} g{ }^{2} g x x x x \\
N & =\frac{6 \pi R^{2}}{2 \sin \theta}\left(\frac{1}{\cos \theta}-1\right)^{2} g x x x
\end{aligned}
$$

$$
F=N \cos \theta=\frac{6 \pi R^{2}}{2 \sin \theta} \frac{(1-\cos \theta)^{2}}{\cos (\text { theta) }} g
$$

11.

$$
\begin{align*}
& d=\frac{1}{2}(9.8) t_{1}^{2} \Rightarrow d=4.9 t_{1}^{2} \tag{1}\\
& t_{1}+t_{2}=39 \Rightarrow t_{2}=3-t_{1} \\
& d=340 t_{2} \text { (3) } \tag{3}
\end{align*}
$$

Store
Sound

ω_{4}		t_{2}	
		1	

Sub. (2) into (3)

$$
\begin{aligned}
d & =340\left(3-t_{1}\right) \\
& =1020-340 t_{1} \\
& =1020-340 \sqrt{\frac{d}{49}} \quad(\text { from (1) })
\end{aligned}
$$

Rearranging:

$$
d=40.65 \mathrm{~m}
$$

$$
F=\sigma \times \pi r^{2}
$$

$$
\begin{aligned}
\text { Wock Done by Wind } & =\int F \cdot d S \\
& =F \times \sqrt{2 L H-H^{2}} \\
& =6 \pi r^{2} \sqrt{2 L H-H^{2}}
\end{aligned}
$$

Enegy Consencution:

$$
\begin{aligned}
\delta \pi r^{2} \sqrt{2 L H-H^{2}} & =m g H \\
\delta^{2} \pi^{2} r^{4}\left(2 L H-H^{2}\right) & =M^{2} g^{2} H^{2} \\
\left(m^{2} g^{2}+\delta^{2} \pi^{2} r^{4}\right) H & =2 L \sigma^{2} \pi^{2} r^{4} \\
H & =\frac{2 L \sigma^{2} \pi^{2} r^{4}}{m^{2} g^{2}+\delta^{2} \pi^{2} r^{4}}
\end{aligned}
$$

$$
\begin{array}{r}
2 F \sin \theta=m g \\
2 F \tanh (\alpha d)=m g \\
F=\frac{m g}{2 \tanh (\alpha d)}
\end{array}
$$

$$
\text { slope }=\sinh (\alpha x)
$$

$$
\begin{aligned}
\Rightarrow \sin \theta & =\frac{\sinh (\alpha x)}{\cosh (\alpha x)} \\
& =\tanh (\alpha x)
\end{aligned}
$$

\qquad

First Stage

\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Spring Constant	$2 k$	$4 k$	$8 k$	$\cdots .$.
Elongation	x	$\frac{x}{2}$	x	$\cdots \cdots$

 $k_{0}=k$
15.

$$
\begin{array}{r}
x+\frac{x}{2}+\frac{x}{4}+\cdots \cdot .=10 \mathrm{~cm} \\
x\left(\frac{1}{1-\frac{1}{2}}\right)=10 \mathrm{~cm} \\
\Rightarrow x=5 \mathrm{~cm}
\end{array}
$$

$$
\text { Fourth Stage Elongation }=\frac{5 \mathrm{~cm}}{8}=0.625 \mathrm{~cm}
$$

Trajectory Equation:

$$
\begin{aligned}
& y=\left(\tan \theta_{1}\right)(x)-\frac{g}{2 v_{1}^{2} \cos ^{2} \theta_{1}}\left(x^{2}\right) \text {. } \\
& \left\{\begin{array}{l}
x=d \cos \phi \\
y=d \sin \phi
\end{array}\right. \\
& y=d \sin \phi \\
& \Rightarrow d \sin \phi=\left(\tan \theta_{1}\right)(d \cos \phi)-\frac{g}{2 v_{1}^{2} \cos ^{2} \theta_{1}}\left(d^{2} \cos ^{2} \phi\right) \\
& \sin \phi \cos ^{2} \theta_{1}=\sin \theta_{1} \cos \theta_{1} \cos \phi-\frac{\operatorname{gd} \cos ^{2} \phi}{2 v_{1}^{2}} \\
& d_{1}=\frac{2 v_{1}^{2}}{g \cos ^{2} \phi} \cos \theta_{1}\left(\sin \theta_{1} \cos \phi-\sin \phi \cos \theta_{1}\right) \\
& =\frac{2 V_{1}^{2}}{g \cos ^{2} \phi} \cos \theta_{1} \sin \left(\theta_{1}-\phi\right) \\
& \text { Similady-1 } d_{2}=\frac{2 v_{2}^{2}}{g \cos ^{2} \phi} \cos \theta_{2} \sin \left(\theta_{2}-\phi\right) \\
& d_{1}=d_{2}, \Rightarrow 2 v_{1}^{2} \cos \theta_{1} \sin \left(\theta_{1}-\beta\right)=2 V_{2}^{2} \cos \theta \sin \left(\theta-\phi \theta^{1}\right. \\
& \left(\frac{V_{1}}{V_{2}}\right)^{2}=\frac{\cos \theta_{2} \sin \left(\theta_{2}-\phi\right)}{\cos \theta_{1} \sin \left(\theta_{1}-\phi\right)}
\end{aligned}
$$

Consider an equivalent case that the density of the balloon is - 0.85 pair (Density of air), and neglect the effect of air.

EPPotwe gravitational ascelestion $=-0.85 \mathrm{~g}$
Effectwe centrifugal acceleaton $=-0.85 \mathrm{a}$

$$
\begin{aligned}
a=\frac{V^{2}}{R} & =\frac{(105 \mathrm{~km} / \mathrm{hour})^{2}}{1000 \mathrm{~m}}=0.85 \mathrm{~ms}^{-2} \\
\Rightarrow \tan \theta & =\frac{-0.85}{-0.85}\left(\frac{a}{\mathrm{~g}}\right) \\
& =\frac{0.85}{9.8}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \theta & =\tan ^{-1}\left(\frac{0.85}{9.8}\right) \\
& =5^{\circ}
\end{aligned}
$$

Effective spring constant, $k=k_{1}+k_{2}=9 \mathrm{~N} / \mathrm{m}$.
Marimuen compression
of spring 4 Equilibrium position

Maximum compression of Spring -1 occurs after $\frac{3}{4}$ pzcisel,
\Rightarrow The time that the bock will take

$$
\begin{aligned}
& =\frac{3 T}{4} \\
& =\frac{3}{4}(2 \pi) \sqrt{\frac{m}{k}} \\
& =\frac{3}{4}(2 \pi) \sqrt{\frac{1}{9}} \\
& =\frac{\pi}{2} \text { seconds }
\end{aligned}
$$

Center of Mass $=\frac{\sum m_{i} x_{i}}{M}$

$$
\begin{aligned}
\sum m_{i x}=\pi r^{2}(r) & +\pi\left(\frac{r}{2}\right)^{2}\left(2 r+\frac{r}{2}\right) \\
& +\pi\left(\frac{r}{4}\right)^{2}\left[2 r+2\left(\frac{r}{2}\right)+\frac{r}{4}\right] \\
& +\pi\left(\frac{r}{8}\right)^{2}\left[2 r+2\left(\frac{r}{2}\right)+2\left(\frac{r}{4}\right)+\frac{r}{8}\right] \\
& +\pi\left(\frac{r}{16}\right)^{2}\left[2 r+2\left(\frac{r}{2}\right)+2\left(\frac{r}{4}\right)+2\left(\frac{r}{8}\right)+\frac{r}{16}\right]
\end{aligned}
$$

$+\ldots .$.

$$
\begin{aligned}
&=\pi r^{3}\left[1+\frac{5}{8}+\frac{13}{64}+\frac{29}{512}+\frac{61}{4096}+\cdots \cdots\right] \\
&=\pi r^{3} \sum_{n=1}^{\infty} 8^{1-n}\left(2^{n+1}-3\right) \\
&=\frac{40}{21} \pi r^{3} \\
& M=\pi r^{2}+\pi\left(\frac{r}{2}\right)^{2}+\pi\left(\frac{r}{4}\right)^{2}+\pi\left(\frac{r}{8}\right)^{2}+\cdots \cdots \\
&=\pi r^{2}\left(1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\cdots \cdots\right) \\
&=\pi r^{2}\left(1+\sum_{n=1}^{\infty}\left(4^{-n}\right)\right. \\
&=\pi r^{2}\left(1+\frac{1}{3}\right) \\
&=\pi r^{2}\left(\frac{4}{3}\right) \\
& \Rightarrow \text { Center of Nos: The mass proportional constant is om } \\
& \Rightarrow
\end{aligned}
$$

$$
\left\{\begin{array}{l}
m v=m v_{1 f}+2 m_{v 45 f} \\
\frac{1}{2} m v^{2}=\frac{1}{2} m v_{1} f^{2}+\frac{1}{2}(2 m) v_{45 f^{2}}
\end{array}\right.
$$

Solutions give:

$$
\left\{\begin{aligned}
V_{I f} & =-\frac{1}{3} V \\
V_{45 f} & =-\frac{2}{3} V
\end{aligned}\right.
$$

(a) $d=d_{2}+d_{3}+d_{4}+d 5+d 6$

$$
\begin{aligned}
& =d_{2}+\frac{h}{\sin \theta_{2}}+d_{4}+\frac{h}{\sin \theta_{2}}+d_{6} \\
& =d_{2}+d_{4}+d_{6}+\frac{2 h}{\sin \theta_{2}}
\end{aligned}
$$

(b) Track 1:

Track 2:

$$
\begin{array}{ll}
t_{d_{1}}=\frac{\sqrt{2 g h}}{g \sin \theta_{1}} & t_{d_{3}}=\frac{\sqrt{g h}(2-\sqrt{2})}{g \sin \theta_{2}} \\
t_{d}=\frac{d}{\sqrt{2 g h}} & t_{d 4}=\frac{d 4}{2 \sqrt{g h}} \\
t_{d_{2}}=\frac{d_{2}}{\sqrt{2 g h}} & t_{d_{5}}=t_{d_{3}}=\frac{\sqrt{g h}(2-\sqrt{2})}{g \sin \theta_{2}} \\
& t_{d 6}=\frac{d_{6}}{\sqrt{2 g h}}
\end{array}
$$

1.

(b)

$$
\begin{aligned}
& t_{T_{1}}=t_{d_{1}}+t_{d} \\
&=\frac{\sqrt{2 g h}}{g \sin \theta_{1}}+\frac{d}{\sqrt{2 g h}} \\
& t_{T_{2}}=e_{d_{1}}+t_{d_{2}}+\cdots+t_{d 6} \\
&=\frac{\sqrt{2 g h}}{g \sin \theta_{1}}+\frac{d_{2}}{\sqrt{2 g h}}+\frac{\sqrt{g h}(2-\sqrt{2})}{g \sin \theta_{2}}+\frac{d_{4}}{2 \sqrt{g h}} \\
&=\frac{\sqrt{g h}(2-\sqrt{3})}{g \sin \theta_{2}}+\frac{d 6}{\sqrt{2 g h}} \\
& g \sin \theta_{1}
\end{aligned} \frac{d_{2}+d_{6}}{\sqrt{2 g h}}+\frac{d 4}{2 \sqrt{g h}}+\frac{2 \sqrt{g h}(2-\sqrt{2})}{g \sin \theta_{2}} .
$$

(c)

$$
\begin{aligned}
\Delta t & =\frac{d}{\sqrt{2 g h}}-\frac{d_{2}+d_{6}}{\sqrt{2 g h}}-\frac{d_{4}}{2 \sqrt{g h}}-\frac{2 \sqrt{g h}(2-\sqrt{2})}{g \sin \theta_{2}} \\
& \left.=\frac{1}{\sqrt{2 g h}} \left\lvert\, d-d_{2}-d_{4}+d_{4}-\frac{d_{4}}{\sqrt{2}}-d_{6}\right.\right)-\frac{2 \sqrt{g h}(2-\sqrt{2})}{g \sin \theta_{2}} \\
& =\frac{1}{\sqrt{2 g h}}\left(\frac{2 h}{\sin \theta_{2}}+\frac{\sqrt{2}-1}{\sqrt{2}} d_{4}\right)-\frac{2 \sqrt{g h}(2-\sqrt{2})}{g \sin \theta_{2}} \\
& =\frac{\sqrt{2 h}}{\sqrt{g \sin \theta_{2}}}-\frac{2 \sqrt{h}(2-\sqrt{2})}{\sqrt{g} \sin \theta_{2}}+\left(\frac{\sqrt{2}-1}{\sqrt{2})} \frac{1}{\sqrt{2 g h}} d u\right. \\
& =\frac{\sqrt{h}(3 \sqrt{2}-4)}{\sqrt{g} \sin \theta_{2}}+\left(\frac{\sqrt{2}-1}{\sqrt{2}}\right) \frac{d 4}{2 g h}
\end{aligned}
$$

（a）
＊Center of the bowl 碗的中心

$$
\begin{align*}
& \sum F_{x}=0, \quad N_{A} \cos \theta=m g \sin \theta \tag{1}\\
& \sum F_{y}=0, \quad N_{A} \sin \theta+N_{B}=m g \cos \theta \\
& \sum M_{A}=0, \quad M_{\text {omant about } A=} \quad \begin{array}{r}
\text { banth os } A B
\end{array} \\
& N_{B}(2 R \cos \theta)-\frac{L}{2} M g \cos \theta=0 \\
& \quad N_{B}=\frac{L M g}{4 R}
\end{align*}
$$

Sub．into（2），

$$
\begin{align*}
& N_{A} \sin \theta+\frac{L m g}{4 R}=m g \cos \theta \\
& N_{A}=\left(m g \cos \theta-\frac{L m g}{4 R}\right) \frac{1}{\sin \theta} \tag{3}
\end{align*}
$$

Sub．into（1），

$$
\begin{gathered}
\left(m g \cos \theta-\frac{L m g}{4 R}\right) \frac{1}{\sin \theta} \cos \theta=m g \sin \theta \\
\frac{4 R \cos ^{2} \theta-L \cos \theta}{4 R}=\sin ^{2} \theta
\end{gathered}
$$

(a) $4 R \cos ^{2} \theta-L \cos \theta=4 R\left(1-\cos ^{2} \theta\right)$

$$
\begin{aligned}
& 8 R \cos ^{2} \theta-L \cos \theta-4 R=0 \\
& \cos \theta=\frac{L \pm \sqrt{L^{2}+128 R^{2}}}{16 R} \\
& \Rightarrow \quad \cos \theta=\frac{L+\sqrt{L^{2}+128 R^{2}}}{16 R} \\
& \quad A B=2 R\left(\frac{L+\sqrt{L^{2}+128 R^{2}}}{16 R}\right)
\end{aligned}
$$

(b) When $L=4 R_{1} \quad \cos \theta=1$

$$
\Rightarrow \quad \theta=0^{\circ}
$$

3.

(a) Consider the upper sphere, energy conservation gives

$$
\begin{aligned}
& \frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \dot{\beta}^{2}+m g(R+r) \cos \alpha=m g(R+r) \\
& v=\dot{\beta} r=(R+r) \dot{\alpha} \\
& \dot{\alpha}^{2}=\frac{\dot{\beta} \frac{r^{2}}{(R+r)^{2}}}{\frac{v^{2}}{2}+\frac{1}{5} r^{2} \dot{\beta}^{2}}+g(R+r) \cos \alpha=g(R+r) \\
& \frac{\dot{\beta}^{2} r^{2}}{2}+\frac{r^{2} \dot{\beta}^{2}}{5}+g(R+r) \cos \alpha=g(R+r) \\
& \frac{7 r^{2} \dot{\beta}^{2}}{10}=g(R+r)(1-\cos \alpha) \\
& r^{2} \dot{\beta}^{2}=\frac{10}{7} g(R+r)(1-\cos \alpha) \\
& \dot{\beta}^{2}=\frac{10}{7 r^{2}} g(R+r)(1-\cos \alpha) \\
&=\frac{10}{7} g \frac{(1-\cos \alpha)}{R+r} \\
& \dot{\alpha}^{2} \\
& v=(R+r) \dot{\alpha} \\
&=(R+r)\left(\frac{10}{7} g \frac{(1-\cos \alpha)}{R+r}\right. \\
&=\sqrt{\frac{10}{7} g(R+r)(1-\cos \alpha)}
\end{aligned}
$$

3.

(b) $\quad m g \cos \alpha-N=\frac{m v^{2}}{R+r}$

Upper sphere will detach from the lower sphere when $N=0$.

$$
\begin{aligned}
g \cos \alpha & =\frac{v^{2}}{R+r} \\
g \cos \alpha & =\frac{10}{7} g(R+r)(1-\cos \alpha) \times \frac{1}{R+r} \\
\cos \alpha & =\frac{10}{7}(1-\cos \alpha) \\
\Rightarrow \cos \alpha & =\frac{10}{17} \\
\alpha & \approx 54^{\circ}
\end{aligned}
$$

(c)

$$
\left\{\begin{aligned}
m g \sin \alpha-f & =m \dot{v} \Rightarrow \dot{v}=g \sin \alpha-\frac{f}{m} \\
f r & =\left(\frac{2}{5} m r^{2}\right) \ddot{\beta} \\
v & =\dot{\beta} r=(R+r) \dot{\alpha} \Rightarrow \dot{v}=\ddot{\beta} r=(R+r) \ddot{\alpha} \\
f r & =\left(\frac{2}{5} m r^{2}\right) \ddot{\beta} \\
& =\left(\frac{2}{5} m r^{2}\right) \frac{\dot{v}}{r} \\
& =\left(\frac{2}{5} m r^{2}\right) \frac{1}{r}\left(g \sin \alpha-\frac{f}{m}\right) \\
& =\left(\frac{2}{5} m\right)\left(g \sin \alpha-\frac{f}{m}\right) \\
& =\frac{2}{5} m g \sin \alpha-\frac{2}{5} f
\end{aligned}\right.
$$

3.

(c) $\Rightarrow \quad f=\frac{2}{7} m g \sin \alpha$ (Given)

Condition to slide: $\quad f=\mu N$

$$
\begin{aligned}
\Rightarrow & \frac{2}{7} m g \sin \alpha
\end{aligned}=\mu N .
$$

Substitute v using the results from (a),

$$
\begin{gathered}
\frac{2}{7} g \sin \alpha=\mu\left[g \cos \alpha-\frac{10}{7} g(1-\cos \alpha)\right] \\
\frac{2}{7} \sin \alpha=\mu \cos \alpha-\frac{10}{7} \mu+\frac{10}{7} \mu \cos \alpha \\
2 \sin \alpha=17 \mu \cos \alpha-10 \mu \\
2\left(\sqrt{1-\cos ^{2} \alpha}\right)=17 \mu \cos \alpha-10 \mu \\
4\left(1-\cos ^{2} \alpha\right)=289 \mu^{2} \cos ^{2} \alpha+100 \mu^{2}-340 \mu^{2} \cos ^{2} \alpha \\
\cos ^{2} \alpha\left(289 \mu^{2}+4\right)-\cos \alpha\left(340 \mu^{2}\right)+100 \mu^{2}-4=0 \\
\cos \alpha=\frac{340 \mu^{2} \pm \sqrt{340^{2} \mu^{4}-4\left(289 \mu^{2}+4\right)\left(100 \mu^{2}-4\right.}}{2\left(289 \mu^{2}+4\right)} \\
=\frac{340 \mu^{2} \pm \sqrt{16\left(189 \mu^{2}+4\right)}}{2\left(289 \mu^{2}+4\right)} \\
=\frac{170 \mu^{2} \pm 2 \sqrt{189 \mu^{2}+4}}{289 \mu^{2}+4}
\end{gathered}
$$

Since $0^{\circ} \leqslant \alpha \leqslant 90^{\circ}$,

$$
\Rightarrow \quad \cos \alpha=\frac{170 \mu^{2}+2 \sqrt{189 \mu^{2}+4}}{289 \mu^{2}+4}
$$

3.

(C) For reference:

(d) When $\mu=0, \cos \alpha=1$ and $\alpha=0^{\circ}$

Remark: without friction, the upper sphere slides immediately.
When $\mu \rightarrow \infty, \quad \cos \alpha=\frac{170+2 \sqrt{189 / \mu^{2}+4 / \mu^{4}}}{289+4 / \mu^{4}}$

$$
\begin{aligned}
& =\frac{170}{289} \\
& =\frac{10}{17} \\
\Rightarrow \quad \alpha & \approx 54^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
K E= & \frac{1}{2}\left(2 M_{1} R_{1}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2}+\frac{1}{2}\left(2 m_{2} R_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2} \\
= & \left(m_{1} R_{1}^{2}+M_{2} R_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2} \\
& R(1-\cos \theta) \frac{x}{l}
\end{aligned}
$$

(a)

$$
P E=-m_{1} g R_{1}(1-\cos \theta)+m_{2} g R_{2}(1-\cos \theta)
$$

(b) $K E+P E=$ constant

$$
\begin{aligned}
&\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2}-m_{1} g R_{1}(1-\cos \theta)+m_{2} g R_{2}(1-\cos \theta) \\
&=\text { constant } \\
&\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2}-m_{1} g R_{1}\left(2 \sin ^{2} \frac{\theta}{2}\right)+m_{2} g R_{2}\left(2 \sin ^{2} \frac{\theta}{2}\right) \\
&=\text { constant }
\end{aligned}
$$

For small $\theta, \quad \sin ^{2}\left(\frac{\theta}{2}\right) \approx \frac{\theta^{2}}{4}$.

$$
\begin{aligned}
& \left(M_{1} R_{1}^{2}+M_{2} R_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2}+\frac{\theta^{2}}{2} g\left(M_{2} R_{2}-m_{1} R_{1}\right)=\text { constant } \\
& \frac{1}{2}(\underline{2})\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2}+\frac{1}{2} g\left(M_{2} R_{2}-m_{1} R_{1}\right) \theta^{2}=\text { constant }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& k_{\text {eff }}=g\left(m_{2} R_{2}-m_{1} R_{1}\right) \quad T=\frac{2 \pi}{\omega} \\
& m_{\text {eff }}=2\left(m_{1} R_{1}^{2}+M_{2} R_{2}^{2}\right) \\
& \omega=\sqrt{\frac{k_{\text {eff }}}{M_{\text {eff }}}}=\sqrt{\frac{g\left(m_{2} R_{2}-m_{1} R_{1}\right)}{2\left(M_{1} R_{1}^{2}+M_{2} R_{2}^{2}\right)}}
\end{aligned}
$$

Altecnatue Method to (b) and (c):

$$
\begin{aligned}
&\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2}-m_{1} g R_{1}(1-\cos \theta)+M_{2} g R_{2}(1-\cos \theta) \\
&=\operatorname{constant} \\
&\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)(2)\left(\frac{d \theta}{d t}\right)\left(\frac{d^{2} \theta}{d t^{2}}\right)-m_{1} g R_{1} \sin \theta \frac{d \theta}{d t}+m_{2} g R_{2} \sin \theta \frac{d \theta}{d t}=0 \\
& 2\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)\left(\frac{d^{2} \theta}{d t^{2}}\right)+g\left(m_{2} R_{2}-m_{1} R_{1}\right) \sin \theta=0 \\
& \frac{d^{2} \theta}{d t^{2}} \approx-\frac{g\left(m_{2} R_{2}-m_{1} R_{1}\right)}{2\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)} \\
& \Rightarrow \omega=\frac{g\left(m_{2} R_{2}-m_{1} R_{1}\right)}{2\left(m_{1} R_{1}^{2}+m_{2} R_{2}^{2}\right)} \\
& \Rightarrow
\end{aligned}
$$

(d) When $m_{1} R_{1} \rightarrow 0$,

$$
T=2 \pi \sqrt{\frac{2 m_{2} R_{2}^{2}}{g m_{2} R_{2}}}=2 \pi \sqrt{\frac{2 R_{2}}{g}}
$$

Remove this thin shell to infinity

Energy to remove a thin shell at radius r :

$$
E=-\frac{G M_{r} m_{r}}{r}
$$

where $M_{r}=$ mass within the radius $r=\frac{4}{3} \pi r^{3} p$
$m_{r}=$ Mass of thin shell at radius r and thickness or.

$$
=-4 \pi r^{2} p \text { or } \quad(\rho=\text { Density of the Sun })
$$

Energy to remove the it thin shell:

$$
\begin{aligned}
E_{i} & =-\frac{G}{r}\left(\frac{4 \pi}{3} r_{i}^{3} \rho\right)\left(-4 \pi r_{i}^{2} \rho \Delta r\right) \\
& =\frac{G(4 \pi)^{2}}{3} \rho^{2} r_{i}^{4} \Delta r \\
E_{\text {total }} & =\sum_{i} E_{i} \\
& =\frac{(4 \pi)^{2} G \rho^{2} \sum_{i}\left(\frac{R_{s}}{N} i\right)^{4}\left(\frac{R_{s}}{N}\right)}{}
\end{aligned}
$$

[Suppose the Sun is divided into N thin shells, when $N \rightarrow \infty]$
5.

$$
\begin{aligned}
E_{\text {Tral }} & =\frac{(4 \pi)^{2}}{3} \frac{G p^{2}}{N^{5}} R s^{5} \sum_{i} i^{4} \\
& =\frac{(4 \pi)^{2}}{3} \frac{G p^{2} R s^{5}}{N^{5}}\left(\frac{6 N^{5}}{30}\right) \\
& =\frac{(4 \pi)^{2}}{3} G p^{2} \frac{R s^{5}}{5} \\
& =\frac{(4 \pi)^{2}}{3} G\left(\frac{M_{s}}{4 / 3 \pi R_{s}^{3}}\right)^{2} \frac{R_{s}^{5}}{5} \\
& =\frac{3}{5} G \frac{M_{s}^{2}}{R_{s}}
\end{aligned}
$$

