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*This question was cancelled in the contest due to a misprint in the original question paper.

Solutions:

1. As there are 11 students whose student number is greater than 89 but only one such

number is prime (97), at least two group leaders have a student number that is not

prime. On the other hand, it is easy to construct a grouping in which all but two group

leaders have prime student numbers, essentially via a ‘greedy algorithm’ (those underlined

are group leaders whose student number is prime):

100, 99, 98, 96, 95 94, 93, 92, 91, 90 97, 88, 87, 86, 85 89, 84, 82, 81, 80

83, 78, 77, 76, 75 79, 74, 72, 70, 69 73, 68, 66, 65, 64 71, 63, 62, 60, 58

67, 57, 56, 55, 54 61, 52, 51, 50, 49 59, 48, 46, 45, 44 53, 42, 40, 39, 38

47, 36, 35, 34, 33 43, 32, 30, 28, 27 41, 26, 25, 24, 22 37, 21, 20, 18, 16

31, 15, 14, 12, 10 29, 9, 8, 6, 4 23, 19, 17, 13, 11 7, 5, 3, 2, 1

It follows that the answer is 18.

2. Clearly, no digit of n can be 0. If the hundreds digit of n is 9, then n is divisible by 9.

As 999 is not divisible by 9 × 9 × 9, the sum of digits of n must be 18, meaning that

the unit digit of n is even (if the unit digit is odd, then the tens digit would be even, in

which case n would be odd and cannot be divisible by the product of its digits). Hence

we check 972, 954, 936 and 918, and none of these satisfies the required property.

We then consider the case where the hundreds digit of n is 8. Then n is divisible by 8,

so the unit digit of n is even. Thus the product of the digits of n, and hence n, must be
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divisible by 16. We check such numbers in descending order: 896, 864, 848, 832, 816, and

only 816 satisfies the requirement. It follows that the greatest possible value of n is 816.

3. Multiplying both equations by ab, we get

a2 + b2 = 5ab and a3 + b3 = 12ab

respectively. Let a + b = S and ab = P . Since a2 + b2 = (a + b)2 − 2ab and a3 + b3 =

(a+ b)3 − 3ab(a+ b), the above equations can be rewritten as

S2 − 2P = 5P and S3 − 3PS = 12P

respectively. The former gives S2 = 7P , which, when plugged in to the latter, gives

7PS − 3PS = 12P . As P 6= 0, we get S = 3 and hence P = 9
7
. It follows that

1

a
+

1

b
=
S

P
=

7

3
.

4. As there are 25 primes less than 100, there are altogether 253 = 15625 possible outcomes.

Since 2021 = 43× 47, the teacher’s product is divisible by 2021 if and only if

� one student chooses 43, one chooses 47 and the other chooses one of the other 23

primes (23× 3! = 138 possibilities);

� two students choose 43 and one student chooses 47 (3 possibilities for permutation);

or

� two students choose 47 and one student chooses 43 (3 possibilities for permutation).

Hence the answer is
138 + 3 + 3

15625
=

144

15625
.

5. Let S be the sum of the three numbers recorded. For each question, either all three

participants choose the same answer (in which case the question will contribute 3 to S),

or two participants choose the same answer and the third chooses a different answer (in

which case the question will contribute 1 to S). Hence S is at least 2021, and so at least

one the numbers recorded exceeds 673 (for 673× 3 < 2021), i.e. the score of the team is

at least 674. Now consider the following scenario.

Ann’s answer Ben’s answer Cat’s answer

First 674 questions Yes Yes No

Next 674 questions Yes No Yes

Last 673 questions No Yes Yes

In the above example Ann and Ben chose the same answer in 674 questions, Ann and Cat

chose the same answer in 674 questions while Ben and Cat chose the same answer in 673

questions. In this case the score of the team is exactly 674. It follows that the minimum

possible score is 674.
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6. Let M be the mid-point of AC. Since BM = 3GM , the distance from B to AC is three

times the distance from G to AC, i.e. 15× 3 = 45.

A

B

C

G

M

15

45

Similarly, the altitudes from A and C have lengths 12×3 = 36 and 20×3 = 60 respectively.

As the length of an altitude is inversely proportional to the corresponding base, we have

AB : AC : BC =
1

60
:

1

45
:

1

36
= 3 : 4 : 5.

It follows that 4ABC is right-angled at A with AB = 45 (same as the distance from B

to AC). Similarly AC = 60 and hence AM = 30, and so we have BM =
√

452 + 302 =

15
√

13 and thus BG = 2
3
BM = 10

√
13.

7. Let y = 2 5
√
x+ 1−2. The equation thus becomes (y+1)4+(y−1)4 = 16, which simplifies

to 2(y2 − 1)(y2 + 7) = 0. For x to be real, we must have y = ±1.

� If y = 1, we have 5
√
x+ 1 =

3

2
and hence x =

211

32
.

� If y = −1, we have 5
√
x+ 1 =

1

2
and hence x = −31

32
.

The answer is thus
211

32
+

(
−31

32

)
=

45

8
.

8. Note that if an odd number is the sum of two non-negative integral powers of 2, then it

must be of the form 2a + 20 for some positive integer a. Hence we have the following two

cases.

� If n is odd, then so is n + 2, and hence n = 2a + 20 and n + 2 = 2b + 20 for some

positive integers a and b. This implies 2b = 2a +2, so (a, b) = (1, 2) and hence n = 3.

We check that this works as n = 21 + 20, n+ 1 = 21 + 21 and n+ 2 = 22 + 21.

� If n is even, then n + 1 is odd and so n + 1 = 2a + 20 for some positive integer a,

i.e. n = 2a. All such n not exceeding 2021 will work as we have n = 2a−1 + 2a−1,

n+ 1 = 2a + 20 and n+ 2 = 2a + 21.
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It follows that the answer is 3 + 2 + 4 + 8 + · · ·+ 1024 = 2049.

9. For a favourable outcome, the two balls should have numbers k and 2nk for some positive

integers k and n. Since 2nk cannot exceed 2021, for each fixed choice of n, the value of k

can range from 1 to the greatest integer not exceeding 2021
2n

. It follows that the number

of favourable outcomes is⌊
2021

21

⌋
+

⌊
2021

22

⌋
+

⌊
2021

23

⌋
+ · · · = 2013

(see remark below). Consequently the answer is

2013(
2021
2

) =
2013

2041210
.

Remark. In computing the number of favourable outcomes, the apparently infinite sum

is finite since each summand becomes zero once the denominator exceeds 2021. While it

is not hard to evaluate the sum directly, it can be shown that the value of this sum is

actually equal to 2021 minus the sum of digits in the binary representation of 2021 (in this

case the sum is 8 since 202110 = 111111001012). One may also note (though unrelated to

this question) that the value of the sum being 2013 means that 22013 is the highest power

of 2 that divides 2021!.

10. Suppose the question is of the form AB + CD where AB and CD are two-digit num-

bers. Then it amounts to choosing (A,B,C,D) such that A,C ∈ {1, 2, 3, ..., 9}, B,D ∈
{0, 1, 2, ..., 9}, A+ C ≤ 9 and B +D ≤ 9.

� A may range from 1 to 8, and for each value of A, there are 9− A choices of C for

which A+C ≤ 9. Hence there are 8 + 7 + 6 + · · ·+ 1 = 36 possible sets of values for

(A,C).

� B may range from 0 to 9, and for each value of B, there are 10−B choices of D for

which B +D ≤ 9. Hence there are 10 + 9 + 8 + · · ·+ 1 = 55 possible sets of values

for (B,D).

It follows that the answer is 36× 55 = 1980.

11. The equation can be rewritten as

(21x+ 20y)2021 + 22(21x+ 20y) = −x2021 − 22x,

or f(21x+20y) = −f(x) if we let f(t) = t2021+22t. Note that f is odd (i.e. f(−t) = −f(t))

and strictly increasing (so that f(s) = f(t) implies s = t). We can thus deduce from

f(21x+ 20y) = −f(x) that 21x+ 20y = −x, and so
x

y
= −10

11
.
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12. Let ∠OAC = ∠OCA = θ. Then ∠DOC and ∠CAB are also equal to θ. Now we have

∠ODA = ∠DOC + ∠DCO = 2θ and ∠OBA = ∠OAB = 2θ, which shows that the

points O, A, B, D are concyclic.

37◦

A B

C

D

O

It follows that ∠OBD = ∠OAD = θ, so ∠ABD = 3θ. To find the value of θ, consider

the interior angles of 4OAB, from which we get 37◦ + 4θ = 180◦, so θ = 35.75◦ and so

x = 3(35.75) = 107.25.

13. We need n3 ≡ 2021 (mod 10000), which is equivalent to n3 ≡ 5 (mod 16) and n3 ≡ 146

(mod 625). We work out the remainders when n is divided by 16 and 625 as follows.

� From n3 ≡ 5 (mod 16) we have n3 ≡ 1 (mod 4) and hence n ≡ 1 (mod 4). Setting

n = 4a+ 1, we have

5 ≡ n3 = (4a+ 1)3 = 16(4a3 + 3a2) + 12a+ 1 (mod 16),

which gives 12a ≡ 4 (mod 16) and hence 3a ≡ 1 (mod 4). This gives a ≡ 3 (mod 4)

and hence n ≡ 13 (mod 16).

� Clearly we have n ≡ 1 (mod 5). We also have n3 ≡ 146 ≡ −4 (mod 25). Checking

13, 63, 113, 162 and 213, only 163 = 4096 is also congruent to −4 modulo 25. This

shows that n ≡ 16 (mod 25). Setting n = 25b+ 16, we have

146 ≡ n3 = (25b+ 16)3 = 625(25b3 + 48b2) + 19200b+ 4096 (mod 625),

which simplifies to 450b ≡ 425 (mod 625), or 18b ≡ 17 (mod 25), or −7b ≡ 17

(mod 25). Noting that 17 + 25 = (−7)(−6), we have b ≡ −6 ≡ 19 (mod 25), and

hence n ≡ 25(19) + 16 ≡ 491 (mod 625).

Now we need to find the smallest positive integer n for which n ≡ 13 (mod 16) and

n ≡ 491 (mod 625). The latter means n is one of 491, 1116, 1741, 2366, ..., and by taking

modulo 16 on this sequence we find that 1741 is the first term which is congruent to 13

modulo 16. It follows that the smallest such n is 1741.
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Remark. It may be more intuitive (though also a bit more tedious) to work out the

digits of n one by one. Clearly the unit digit of n is 1. Setting n = 10a+ 1, we have

n3 = (10a+ 1)3 = 10(100a3 + 30a2 + 3a) + 1,

so that 3a must have unit digit 2 in order for n3 to have tens digit 2. It follows that a

has unit digit 4, so we may write n = 100b+ 41 and continue in a similar manner to find

the hundreds and thousands digits of n.

14. Clearly, student 1 and student 21 never give presentations. For each student numbered

n, where 2 ≤ n ≤ 20, we count the number of times the student presents. The student

will give presentation in a lesson if and only one of the other two students responsible

for preparing has number less than n and the other has number larger than n. There

are thus (n− 1)(21− n) such combinations, and this is also the number of times student

number n gives presentations as any three students have been preparing notes together

exactly once. Hence n will occur in the sum (n− 1)(21− n) times for each such n. The

required sum is thus equal to

2 · 1 · 19 + 3 · 2 · 18 + 4 · 3 · 17 + · · ·+ 19 · 18 · 2 + 20 · 19 · 1.

We can pair up the first and last terms, the second and second last terms, and so on, to

get the answer

22× (1 · 19 + 2 · 18 + 3 · 17 + · · ·+ 9 · 11) + 11 · 10 · 10 = 22× 615 + 1100 = 14630.

Remark. While it is not too hard to evaluate the sum 1 · 19 + 2 · 18 + 3 · 17 + · · ·+ 9 · 11

directly, there is a more systematic way to do so:

1 · 19 + 2 · 18 + · · ·+ 9 · 11 = (102 − 92) + (102 − 82) + · · ·+ (102 − 12)

= 102 · 9− (12 + 22 + · · ·+ 92)

= 900− 9(9 + 1)(2 · 9 + 1)

6

and this alternative method will work better if the parameter 21 in the question is signif-

icantly enlarged.

15. Let n be the common digit, a be the other digit in the numerator and b be the other digit

in the denominator, where a < b and a, b are relatively prime. Since

10a+ n

10b+ n
>
a

b
and

10n+ a

10n+ b
>
a

b

whenever a < b, the common digit n cannot occur as the unit digit in both the numerator

and denominator, nor as the tens digit in both. We consider the following two cases.
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� If n occurs as the tens digit in the numerator and unit digit in the denominator,

then we have
10n+ a

10b+ n
=
a

b
,

which simplifies to 10bn = 9ab+an. As a < b we get 10bn < 9ab+ bn, which implies

n < a, but this leads to the contradiction

an = 10bn− 9ab ≤ 10b(a− 1)− 9ab = (a− 10)b < 0.

Hence there is no solution in this case.

� If n occurs as the unit digit in the numerator and tens digit in the denominator,

then we have
10a+ n

10n+ b
=
a

b
,

which simplifies to 10an = 9ab+bn. As a < b we get 10an > 9ab+an, which implies

n > b. Also, taking modulo 9 on the equality gives an ≡ bn (mod 9). Knowing that

a < b < n, either n = 9 or we must have (a, b, n) = (1, 4, 6) or (a, b, n) = (2, 5, 6).

The last two cases both work as

16

64
=

1

4
and

26

65
=

2

5
.

It remains to consider n = 9. The equality becomes 90a = 9ab+ 9b, or

(a+ 1)(10− b) = 10.

Given that 1 ≤ a < b < n = 9, the factor a + 1 may be 2 or 5, but the latter is

rejected since it gives (a, b) = (4, 8) which contradicts a and b beng relatively prime.

The former gives (a, b) = (1, 5) which works as
19

95
=

1

5
.

It follows that the answer is
1

4
+

2

5
+

1

5
=

17

20
.

16. Let f(a, b, c) = a3 + b3 + c3 − 3abc. Note that f(a, b, c) can be factorised as

(a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) =
(a+ b+ c)[(a− b)2 + (b− c)2 + (c− a)2]

2
.

From this we readily see that

f(a, a, a+ 1) = 3a+ 1 and f(a, a+ 1, a+ 1) = 3a+ 2

for any a, meaning that all positive integers that are not divisible by 3 can be expressed

in the desired form. Now suppose f(a, b, c) = (a + b + c)(a2 + b2 + c2 − ab − bc − ca) is

divisible by 3. Note that

a2 + b2 + c2 − ab− bc− ca = (a+ b+ c)2 − 3(ab+ bc+ ca)

≡ (a+ b+ c)2 (mod 3).
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It follows that a+ b+ c, and hence a2 + b2 + c2 − ab− bc− ca, must be divisible by 3, in

which case f(a, b, c) must be divisible by 9. Finally, we have

f(a, a+ 1, a+ 2) = 9(a+ 1)

and so all positive multiples of 9 can be expressed in the desired form too. Therefore the

only positive integers that cannot be expressed in the desired form are those divisible by

3 but not 9, and so the answer is

2021−
(⌊

2021

3

⌋
−
⌊

2021

9

⌋)
= 1572.

17. We have AF = AE = 4 and CD = CE = 2. Let BD = BF = x, and G be the foot of

perpendicular from C to AB. Then CG = 6 sin 60◦ = 3
√

3 and AG = 6 cos 60◦ = 3. It

follows that GF = 1.

60◦

A

B C
D

E

F

M

G

P

Q

Applying Pythagoras’ Theorem in 4BCG, we have (x+ 2)2 = (x+ 1)2 + (3
√

3)2, which

gives x = 12. By the power chord theorem (see remark below) and the given fact that

AP = QM , we have

MD2 = MQ×MP = AP × AQ = AE2 = 16

and so MD = 4. Hence we have AC = MC = 6. Applying the cosine formula in 4ABC,

we have

cosC =
a2 + b2 − c2

2ab
=

142 + 62 − 162

2(14)(6)
= −1

7

and so applying the formula again in 4AMC gives the answer

AM =

√
62 + 62 − 2(6)(6)

(
−1

7

)
=

24
√

7

7
.

Remark. Let X be a point outside a circle. The power chord theorem asserts that for any

straight line passing through X and intersecting the circle at A and B (possibly A = B

if the line is tangent to the circle), the value of XA ·XB is a constant. Equivalently, we

have XA ·XB = XC ·XD = XE2 in the figure below. The theorem can be easily proved

using the fact that 4XAC ∼ 4XDB and 4XEA ∼ 4XBE.
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A

B

C

D

E

X

18. Suppose 4AnBnCn is acute with orthocentre H.

An

Bn Cn

H

An+1

Bn+1

Cn+1

Then HAn+1BnCn+1 and HAn+1CnBn+1 are both cyclic quadrilaterals, so we have

∠HAn+1Cn+1 = ∠HBnCn+1 = 90◦ − ∠An

and similarly ∠HAn+1Bn+1 = 90◦ − ∠An. It follows that ∠An+1 = 180◦ − 2∠An. By

writing ∠An = (60 + an)◦, this becomes 60 + an+1 = 180 − 2(60 + an), or an+1 = −2an.

By defining bn and cn analogously, we can obtain bn+1 = −2bn and cn+1 = −2cn in the

same manner. Note that an + bn + cn = 0 for all n.

Now the game ends when any one of an, bn and cn becomes 30 or larger. As a0, b0 and c0
are not all zeros and cannot be all positive, at least one of a5 = −32a0, b5 = −32b0 and

c5 = −32c0 will be greater than 30 if the game has not yet ended when n = 4. As Ben

is the one who constructs 4A5B5C5, Ann must seek to ensure 4A4B4C4 is not acute for

the greatest positive return. Hence one of a4 = 16a0, b4 = 16b0 and c4 = 16c0 must be

greater than or equal to 30, whereas all of a3 = −8a0, b3 = −8b0 and c3 = −8c0 must be

less than 30.

Subject to the above constraints, we would like to maximise a0 (hence minimise b0 + c0).

As b3 and c3 are to be less than 30, each of b0 and c0 can be no less than −3. It follows that

a0 cannot exceed 6. Now we check that (a0, b0, c0) = (6,−3,−3) works as the triangles

would evolve as follows:
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n 0 1 2 3 4

∠An 66◦ 48◦ 84◦ 12◦ 156◦

∠Bn 57◦ 66◦ 48◦ 84◦ 12◦

∠Cn 57◦ 66◦ 48◦ 84◦ 12◦

It follows that the greatest possible value of ∠A0 is 66◦.

19. Since a square can only be congruent to 0 or 1 modulo 3, a2 + b2 is divisible by 3 if and

only if both a2 and b2, and hence both a and b, are divisible by 3. It follows that f(n) = 0

if n is divisible by 3 but not 9. The desired sum can thus be reduced to

f(9) + f(18) + f(27) + · · ·+ f(2016).

Furthermore, we have f(9k) = f(k), since if 9k = a2 + b2 then both a and b are divisible

by 3, so setting a = 3c and b = 3d reduces the equation to k = c2 + d2, meaning that

each way of expressing 9k as the sum of two squares corresponds to a way of expressing

k as the sum of two squares (and the converse is clearly true). The desired sum is thus

further reduced to

f(1) + f(2) + f(3) + · · ·+ f(224)

and this is simply equal to the number of pairs of non-negative integers (x, y) for which

x ≤ y and 1 ≤ x2 + y2 ≤ 224. We have 0 ≤ x ≤ 10, and for each fixed x the value of y

can range from x to b
√

224− x2c for a total of b
√

224− x2c− x+ 1 choices. We tabulate

this number as follows:

Value of x 0 1 2 3 4 5 6 7 8 9 10

Choices for y 15 14 13 12 11 10 8 7 5 3 2

Not forgetting that the pair (x, y) = (0, 0) has to be rejected, the answer is

15 + 14 + 13 + 12 + 11 + 10 + 8 + 7 + 5 + 3 + 2− 1 = 99.

20. With reference to the figure below, we rotate 4GFB about F by 90◦ and 4GDC about

D by 90◦, both towards the interior of 4ABC. Since DEFG is a square, the image of

G under both rotations is E. Furthermore, since GB = GC and ∠FGB +∠DGC = 90◦,

the images of B and C under the respective rotations are the same, which we label as H.
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A

B C

D

E

F

G

H

Note that HF is perpendicular to AB and HD is perpendicular to AC. It follows that

AF 2 + FB2 = AF 2 + FH2 = AH2 = AD2 +DH2 = 112 + 22 = 125.

Together with AF + FB = 15 and AF > FB we can solve to get AF = 10 and FB = 5.

On the other hand, since ∠FHD = ∠FHE + ∠DHE = ∠B + ∠C = 180◦ − ∠A, we see

that AFHD is a cyclic quadrilateral. Ptolemy’s theorem (see remark below) thus asserts

that AH ·DF = AF ·HD + AD · FH, or

√
125 ·DF = 10 · 2 + 11 · 5.

From this we get DF =
75√
125

=
√

45, and the area of DEFG is thus
1

2
DF 2 =

45

2
.

Remark. Ptolemy’s theorem asserts that if ABCD is a cyclic quadrilateral, then

AC ·BD = AB · CD +BC · AD.

More generally, we have Ptolemy’s inequality, which asserts that in any convex quadrilat-

eral ABCD,

AC ·BD ≤ AB · CD +BC · AD,

and equality holds if and only if ABCD is cyclic. Many different proofs that make use of

various tools in algebra and geometry are known.
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