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 International Mathematical Olympiad 

Preliminary Selection Contest 2018 — Hong Kong 

 

Outline of Solutions 

 

Answers: 

1. 12 2. 167334 3. 30  4. 36 20 3  

5. 194 6. 163 7. 207360 8. 220 

9. 1353 10. 510050 11. 2991 12. 2039190 

13. 14 6 2  14. 193 15. 400 16. 
49

16
 

17. 
18

19
 18. 

43

128
 19. 264 20. 10 

 

Solutions: 

 

1. Each of 17, 19 and 23 can only pair up with 1 to form a fraction that can be simplified to an 

integer. As the integer 1 can only be used once, at least one fraction cannot be simplified to an 

integer. Therefore, at most 12 fractions can be simplified to integers. This upper bound is 

attainable, e.g. we may form the fractions 

23 14 15 12 25 24 21 16 18 20 22 26 19
, , , , , , , , , , , ,

1 2 3 4 5 6 7 8 9 10 11 13 17
 

in which all but the last can be simplified to an integer. 

 

2. Let the two three-digit numbers be m and n respectively. Then the six-digit number is 

1000m n . It is given that 1000 3m n mn  , which is the same as (3 1000)n m n  .  

Let 3 1000n k  . Then 1000 3 3 (3 1)n k km k k m      . As 3 1 3(100) 1 299m     and 

3 1m  is a factor of 1000, we must have 3 1 500m   or 3 1 1000m  . The latter does not 

have integer solution, while the former gives 167m  . In that case, we have 2k   and hence 

334n  . The six-digit number is thus 167334. 
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3. Let F be a point on the extension of CB beyond 

B. From the given angles, we find that 

60 18 42DBA BDC BAC         and 

18 24 42ABF BAC ACB        . 

These show BE is the angle bisector of DBF . 

As DE is the angle bisector of ADB , point E 

is the ex-centre of CDB opposite to C. 

Therefore, we have 
1

12
2

ACE ACB     . Thus, 18 12 30BEC EAC ACE        . 

Remark.  This question may also be solved without knowledge of the ex-centre. If we let 'D  

denote the image of the reflection of D across AB, then similar computations as above show 

that 'D  lies on the extension of CB and that E is the in-centre of 'AD C . 

 

4. From the condition, we find that ( 4) ( 2) ( )f x f x f x     . This shows f  has period 4. As 

10 3 17.3 , we have  (10 3) (10 3 4 4) (10 3 18) 2 (18 10 3)f f f f        . Note 

that 0 18 10 3 1   . Thus, we obtain (10 3) 2(18 10 3) 36 20 3f     . 

 

5. Let a be the L.C.M. of 1, 2, 3, …, n, and let b be the L.C.M. of 101, 102, 103, …, n. Firstly, 

observe that the prime number 97 is a factor of a since 100n  . If we want to have a b , then 

97 must be a factor of one of 101, 102, 103, …, n. Since 97 2 194  , we need 194n  . 

We now show that a b  when 194n  . It suffices to show that that each of 1, 2, 3, …, 100 

divides b. This certainly is true for each of 1, 2, 3, …, 97, since each of these numbers has at 

least one multiple among 101, 102, … 194. Now 298 2 7  , 299 3 11   and 2 2100 2 5  , so 

it remains to check that 2 2 2 22 3 5 7 11     divides b. This is certainly true as there are 

multiples of 22 , 23 , 25 , 27  and 11 among 101, 102, … 194. Hence the answer is 194. 

 

6. Clearly, 3p  . Hence p is odd and it is not divisible by 3, so both 1p   and 1p   are even and 

exactly one of them is a multiple of 3.  Recall that for any integer n with prime factorisation 

1 2

1 2
taa a

tn p p p , it has exactly 1 2( 1)( 1) ( 1)ta a a    positive factors. We have two cases. 

 If 1p   is a multiple of 3, then 1p   must be  22 3  or 22 3  since has exactly 6 positive 

factors. These give 1p   to be 10 or 16, neither of which has exactly 10 positive factors. 

 If 1p   is a multiple of 3, then 1p   must be 42 3  or 42 3  as it has exactly 10 positive 

factors. The former case gives 49p   which is not prime. The latter case gives 163p   

which is prime, and in that case 21 164 2 41p     has exactly 6 positive factors. 

It follows that we have 163p  . 
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7. There are 9 ways to put the number 5. After the position of 5 is fixed, there are 8 ways to 

choose the number next to 5 in the same row (if 5 is in the middle of a row, then we choose the 

number on the left of 5). As 5 is the median of its row, there are 4 ways to choose the 

remaining number of the row (e.g. if 4 is chosen next to 5, then the remaining number in the 

same row must be chosen from 6 to 9). This gives us 9 8 4 288    ways of completing the 

row containing the number 5. 

Now no matter how we fill in the 6 remaining cells, the median of the circled numbers must be 

5. (If the median of the circled numbers is greater than 5, that means the medians of the other 

two rows are both greater than 5, which means there should be two of 6, 7, 8, 9 in each row, 

contradicting the fact that one of them is in the row containing 5. Similar contradiction arises if 

the median of the circled numbers is less than 5.) Hence the answer is 288 6! 207360  . 

 

8. Let 3 2( )P x ax bx cx d    . The problem is equivalent to counting integer solutions to 

9a b c d       subject to 0 , , , 9a b c d  . Setting 9x a   and 9y c  , this is in turn 

equivalent to counting integer solutions to 9b d x y     subject to 0 , , , 9b d x y  , i.e. we 

have to count the number of non-negative integer solutions to 9b d x y    . It is well-

known that the number of such solutions is 4 9 4 1 12

9 4 1 3 220H C C 

   . 

 

9. Let [DEF] denote the area of DEF. We first note that 

90BAC    since 2 2 29 12 15  . Thus 
9 12

[ ] 54
2

ABC


  . Let 

AX BY CZ x   . Then we have 12AZ x  , 9BX x   and 

15CY x  . Hence we have 
(12 )

[ ]
2 2

AX AZ x x
AXZ

 
   and 

1 (9 ) 12 2 (9 )
[ ] sin

2 2 15 5

x x x x
BYX BY BX CBA

 
       . 

Similarly, 
1 (15 ) 9 3 (15 )

[ ] sin
2 2 15 10

x x x x
CZY CZ CY ACB

 
       . It follows that 

2(141 12 ) 1
[ ] [ ] [ ] [ ] [ ] 54 (12 141 540)

10 10

x x
XYZ ABC AXZ BYX CZY x x


          

with 0 9x  . The minimum of this quadratic polynomial occurs when 
141

5.9
12 2

x  


, in 

which case 
2 21 141 141 2013

[ ] 12 540 12.6
10 4 24 160

XYZ
 

      
 

. On the other hand, when x 

approaches 0, XYZ can be arbitrarily close to ABC. Thus, [XYZ] can be arbitrarily close to 

54 but cannot exceed or be equal to 54. Hence it can take any integer value from 13 to 53 

inclusive. The answer is thus 13 14 53 1353    . 
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10. If 1010x y  , then [ ] [ ] 1010x y x y     and hence 

[ ] [ ] 1009x y  . In this case, we must have 

[ ] [ ] 1010 1009 2019x y x y      . This means all 

points ( , )x y  where , 0x y   and 1010x y   are 

coloured blue. 

 If 1010x y  , then [ ] [ ] 1 1 1008x y x y       and 

hence [ ] [ ] 1009x y  . In this case, we must have 

[ ] [ ] 1010 1009 2019x y x y      . This means all 

points ( , )x y  where , 0x y   and 1010x y   are not 

coloured blue. 

Points ( , )x y  with 1010x y   do not matter as they lie on a straight line which contributes 

zero area. Thus, the blue region is an isosceles right-angled triangle with legs 1010. Its area is  

1010 1010
510050

2


 . 

 

11. We have 27653 3 10 2765 2765 2765 2

12 1 2 (2 ) 1 8(1025 1) 1 8( 1 1025 1025 ) 1C m              for 

some integer m in view of the binomial theorem. Note that m must be even since 10 2765(2 )  is 

even. Let 2m k . Then 

27653 2 4 4 22 1 8( 1 2765 1025 1025 2 ) 1 22672991 2 5 41k k            . 

 As 4 42 5  is a multiple of 10000, the last four digits of 276532 1  are 2991. 

 

12. A term in the expansion of 2 2018( 20 18)a ab   is of the form 2 2018( ) (20 ) (18)i j i ja ab   . If this 

and another term of the form 2 2018( ) (20 ) (18)m m m na ab    are like terms, we can compare the 

powers of a and b to get 2 2i j m n    and j n  respectively. This is possible only if 

( , ) ( , )i j m n . This shows distinct choices of the exponents i and j give distinct monomials. 

Hence the answer would be the same if we consider the number of unlike terms in the 

expansion of 2018( )x y z  . As each term is of the form 2018i j i jx y z   , it is the same as counting 

the number of non-negative integer pairs (i, j) such that 2018i j  . For each fixed i, there are 

2019 i  choices of j. Hence, the answer is 2019 2018 1 2039190    . 

Remark.  We may also write a general term in the expansion of 2018( )x y z   as i j kx y z  

where 2018i j k   . Then we would be counting the number of non-negative integer 

solutions to the equation 2018i j k   , which is 3 2020 2020

2018 2018 2 2039190H C C   . 
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13. Let DB x  and 
2

x
EC  . Since D and E are 

equidistant from O, their powers with respect 

to the circumcircle of ABC are equal. This 

implies DB DA EC EA   , so we have 

1 1
( 1) 2

2 2
x x x x

 
   

 
, solving which 

gives 2 2 2x    as 0x  . Thus, the power 

of D with respect to the circumcircle of ABC 

is ( 1) 10 6 2DB DA x x     . Recall that 

the power is also equal to 2 2OD OA . Thus 

we have  2 210 6 2 14 6 2OD OA     . 

 

14. Note that 2016 divides 3 3(3 2019) 2016 3( 1)n n    . This implies 5672 2 3 7    divides 
3 21 ( 1)( 1)n n n n     .  

As 2 1n n   is odd (because 2 ( 1)n n n n    is the product of two consecutive positive 

integers, one of which must be even), 1n  must be a multiple of 52 . Furthermore, 1n  must 

be a multiple of 3 as well, since if 0n   or 2n   (mod 3), we would have 2 1 1n n    

(mod 3) . This means 1n  is divisible by 52 3 96  . 

Clearly 1n   as 33 2019n   is positive. Next we try 97n  , which fails as neither 1n  nor 
2 1n n   is divisible by 7 in this case. The next candidate is 96 2 1 193n     , which works 

as 2 21 2 2 1 0n n       (mod 7). It follows that the answer is 193. 

 

15. Since AB AC , we have ABD ACD AED   . 

This implies A, E, B and D are concyclic. Hence, we 

have FBD EAD CAD   , which in turn shows 

that A, B, F and C are concyclic. It follows that 

ABC ACB AFB   , so we have ~ABD AFB   

and hence 2 400AD AF AB   . 

Remark.  The condition 18BC   is redundant. 
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16. Denote by [XYZ] the area of XYZ. Let P be the intersection of AC and BD. Then 

1
sin

[ ] sin2 1
1[ ] sin

sin
2

AB AD BAD
AP ABD BAD

CP CBD BCD
CB CD BCD

 


   


 

 from the given condition and the fact 

that 180BAD BCD    . This implies 
56

28
2

AP CP   . 

Let BP x  and 65DP x  . By the power chord theorem, 

we have PA PC PB PD   , or 228 (65 )x x  . This 

simplifies to ( 16)( 49) 0x x   . As BC DA , AP CP  

and APD BPC  , we must have BP DP . Thus, we 

reject 16x  , leaving 49x   and 
[ ] 49

[ ] 16

ABC PB

ADC PD
  . 

 

17. Note that 3 2 2(2 1) (4 1) 2 ( 2)( (2 1) 1)x a x a x x x a x          . Hence all the roots of the 

equation are real if and only if the discriminant of the quadratic polynomial 2 (2 1) 1x a x    is 

non-negative, i.e. 2(2 1) 4 0a   . This is the same as 
3

2
a   or 

1

2
a   . Therefore, the 

probability that all the roots are real is 

3 1

182 2
1

18 ( 20) 19

 
  
  
 

. 

 

18. We divide the students into 3 groups — students 0, 3, 6, 9 belong to Group A, students 1, 4, 7, 

10 belong to Group B and students 2, 5, 8, 11 belong to Group C. 

 Note that we can ignore students in group A since their scores must be multiples of 3. Suppose 

m students from Group B and n students from Group C obtained heads. Then we require 

2m n  to be a multiple of 3 in order for the sum of all scores to be divisible by 3. That means 

we need 2m n n    (mod 3). We note that the probability for  

 0m   (mod 3), meaning 0m   or 3, is 
4 4

0 3

4

5

2 16

C C
 ; 

 1m   (mod 3), meaning 1m   or 4, is 
4 4

1 4

4

5

2 16

C C
 ; 

 2m   (mod 3), meaning 2m  , is 
4

2

4

6

2 16

C
 . 

and the same is true for n. Hence the required probability is 
5 5 5 5 6 6 43

16 16 16 16 16 16 128
      . 
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19. Note that each jump can be one of (5,0)a  , (0,5)b  , (3,4)c  , (4,3)d  , (3, 4)e   , 

( 4,3)f    or their negatives. The order of the jumps does not affect the final position. As 

each choice may be used more than once, the number of ways to choose 3 jumps from these 12 

possibilities is 12 12 3 1

3 3 364H C    . It remains to remove from these 364 choices those that 

lead to the same final position. 

First we consider the case in which two of the three jumps are negative of each other. In such 

cases the final position is one of , , , , ,a b c d e f      . Suppose final position is a. There are 6 

ways to choose the routes since there are 6 ways to choose, in addition to a, a pair of jumps 

which cancel each other. That means 5 routes with final position a should be eliminated in our 

counting. Similarly, we need to eliminate 5 routes for each of the 12 final positions, making in 

total of 5 12 60   routes to be eliminated. 

 Next, we consider those repetitions arisen from routes consisting of three jumps no two of 

which are negative of each other. Suppose u v w x y z      where each variable 

corresponds to one of the 12 possible jumps. Then we can move everything to one side and 

eliminate like terms to obtain an expression of at most 6 terms with sum 0. Thus, it remains to 

find all ways to choose at most 6 terms from , , , , ,a b c d e f       with sum 0. 

 Note that the x-coordinates of a, c, e are odd (call these ‘odd terms’), while those of b, d, f are 

even (call these ‘even terms’). Thus, there is an even number of odd terms. By symmetry, we 

may assume there are more odd than even terms. 

 If there are 2 odd terms, then there are 2 even terms since the total number of terms is 

even. As the y-coordinates of the odd terms are multiples of 4, the only possibilities are 

( ) (4,8)b d    , ( ) ( 4,8)b f      and ( ) (8,0)d f    . None of these is a sum of 

two off terms. 

 If there are 4 odd terms, then there are 2 even terms. Again, the only possibilities are 

(4,8) , ( 4,8)  and (8,0)  up to a plus or minus sign. In order for the y-coordinate to be 8, 

we can only choose 3 (12,8)c e  , 3 ( 12,8)c e    , 2 2 (16,8),( 4,8)a c    , 

2 ( 10,8)a c e      or 2 2 (4,8),( 16,8)a e    . Among these, we obtain two identities 

2 2 0a b c f      and 2 2 0a b e d    . Similarly, in order for the x-coordinate to be 

8, we can only choose 2 (8,12)a c e    or 2 (8, 12)a c e    . Thus we cannot obtain 

(8,0) . 

It follows from symmetry that the only identities are 2 2 0a b c f     , 2 2 0a b e d    , 

2 2 0b a d e      and 2 2 0b a f c    . For each identity, we distribute the terms so that 

each side contains 3 terms, which corresponds to the original equation u v w x y z     . It 

is easy to check that there are exactly 10 ways to distribute the terms in each case. This shows 

that there are 10 4 40   final positions which are counted twice. 

By subtracting the repetitions, the number of distinct final positions is 364 60 40 264   . 
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20. The equation can be rewritten as 2 21 6( 1) 5 ( 1)( 1)x x x x x x        . Note that 1x  . 

This implies 
2 21 1

6 5
1 1

x x x x

x x

   
 

 
. Setting 

2 1

1

x x
y

x

 



, the equation becomes 

2 6 5y y  , or ( 2)( 3) 0y y   . It follows that y is either 2 or 3. 

 If 2y  , we square both sides of 
2 1

2
1

x x

x

 



 and then simplify to obtain 

2 3 5 0x x   , which has no real solution. 

 If 3y  , we work on 
2 1

3
1

x x

x

 



 similarly to obtain 2 8 10 0x x   . The solutions 

4 6x    both satisfy 1x   and hence they are indeed solutions to the original equation.  

The answer is thus the product of roots of the equation 2 8 10 0x x   , which is 10. 


