International Mathematical Olympiad

Preliminary Selection Contest 2005 - Hong Kong

Outline of Solutions

Answers:

1. 5
2. $\frac{35}{12}$
3. $\frac{5050}{10101}$
4. 165
5. 516
6. 957
7. 72
8. 5
9. $\frac{9 \sqrt{3}}{32}$
10. 6
11. 340
12. $\frac{\sqrt{14}}{4}$
13. 546
14. 333
15. $\frac{\sqrt{21}}{3}$
16. 101
17. -4659
18. $\frac{\sqrt{5}-1}{2}$
19. $\frac{4022030}{3}$
20. $\frac{2005 \sqrt{2006}}{4012}$

Solutions:

1. Since 2005 is odd, all a_{i} 's must be odd. Since the odd a_{i} ' s add up to 2005, n must be odd as well. Consider the case $n=3$ with $a_{1} \geq a_{2} \geq a_{3}$. Then $a_{1} \geq \frac{2005}{3}$ and this forces $a_{1}=2005$ by considering the factors of 2005. Then we must have $a_{2}+a_{3}=0$ and $a_{2} a_{3}=1$, which means $a_{2}{ }^{2}+1=0$ and hence leads to no solution. Finally, we see that $n=5$ is possible since

$$
2005+1+(-1)+1+(-1)=2005 \times 1 \times(-1) \times 1 \times(-1)=2005 .
$$

Hence the answer is 5 .
2. Produce $A D$ to G and $B E$ to H such that $A C / / B G$ and $B C / / A H$. Let $B D=2 x, D C=3 x, A E=3 y$, $E C=4 y$. Since $\triangle A C D \sim \triangle G B D$, we have $\frac{A C}{B G}=\frac{A D}{D G}=\frac{C D}{D B}=\frac{3}{2} \quad$. Hence $\quad B G=\frac{14 y}{3} \quad$ and $A D: D G=3: 2$, i.e. $A D=\frac{3}{5} A G$. On the other hand,

since $\triangle A E F \sim \triangle G B F, \frac{A F}{F G}=\frac{F E}{B F}=\frac{A E}{B G}=\frac{3 y}{\frac{14 y}{3}}=\frac{9}{14}$.
Thus $\frac{B F}{F E}=\frac{14}{9}$ and $A F=\frac{9}{23} F G$. If follows that $F D=A D-A F=\frac{3}{5} A G-\frac{9}{23} F G=\frac{24}{115} F G$.
Thus $\frac{A F}{F D}=\frac{\frac{9}{23} F G}{\frac{24}{115} F G}=\frac{15}{8}$ and hence $\frac{A F}{F D} \times \frac{B F}{F E}=\frac{15}{8} \times \frac{14}{9}=\frac{35}{12}$.
3. Observe that $1+k^{2}+k^{4}=\left(1+k^{2}\right)^{2}-k^{2}=\left(1-k+k^{2}\right)\left(1+k+k^{2}\right)$. Let

$$
\frac{k}{1+k^{2}+k^{4}} \equiv \frac{A}{k(k-1)+1}+\frac{B}{k(k+1)+1} .
$$

Solving, we have $A=\frac{1}{2}$ and $B=-\frac{1}{2}$. It follows that

$$
\begin{aligned}
& \frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\cdots+\frac{100}{1+100^{2}+100^{4}} \\
= & \frac{1}{2}\left[\left(\frac{1}{0 \times 1+1}-\frac{1}{1 \times 2+1}\right)+\left(\frac{1}{1 \times 2+1}-\frac{1}{2 \times 3+1}\right)+\cdots+\left(\frac{1}{99 \times 100+1}-\frac{1}{100 \times 101+1}\right)\right] \\
= & \frac{1}{2}\left[1-\frac{1}{10101}\right] \\
= & \frac{5050}{10101}
\end{aligned}
$$

4. Let the length and width of the banner be $x \mathrm{~m}$ and $y \mathrm{~m}$ respectively. According to the question, x, y are positive integers with $330 x+450 y \leq 10000$. Thus the area of the banner is

$$
x y=\frac{(330 x)(450 y)}{(330)(450)} \leq \frac{1}{(330)(450)}\left[\frac{330 x+450 y}{2}\right]^{2} \leq \frac{1}{(330)(450)}\left[\frac{10000}{2}\right]^{2}<169 \mathrm{~m}^{2}
$$

by the AM-GM inequality. Note that we must have $x \leq 30$ and $y \leq 22$.
If the area is $168 \mathrm{~m}^{2}$, then we have the possibilities $(x, y)=(12,14) ;(14,12)$ and $(24,7)$, yet none of them satisfies $330 x+450 y \leq 10000$. Since 167 is prime and the only factors of 166 are $1,2,83$ and 166 , we easily see that the area cannot be $167 \mathrm{~m}^{2}$ nor $166 \mathrm{~m}^{2}$ either.
Finally, we see that $x=15$ and $y=11$ satisfies all conditions and give an area of $165 \mathrm{~m}^{2}$. Thus the maximum area of the banner is $165 \mathrm{~m}^{2}$.
5. There are 16 ordered pairs (x, y) of integers satisfying $1 \leq x \leq 4$ and $1 \leq y \leq 4$. Thus $C_{3}^{16}=560$ triangles can be formed. We must, however, delete those degenerate triangles, i.e. sets of three
points which are collinear. There are 4 horizontal lines of 4 points and 4 vertical lines of 4 points. These together produce $(4+4) \times C_{3}^{4}=32$ degenerate triangles. Also, the points $(1,1)$; $(2,2) ;(3,3)$ and $(4,4)$ are collinear, leading to $C_{3}^{4}=4$ degenerate triangles, and so are the points $(1,4) ;(2,3) ;(3,2)$ and $(4,1)$. Finally, we also need to delete the 4 degenerate triangles $\{(1,2) ;(2,3) ;(3,4)\},\{(2,1) ;(3,2) ;(4,3)\},\{(1,3) ;(2,2) ;(3,1)\}$ and $\{(2,4) ;(3,3) ;(4,2)\}$. It follows that the answer is $560-32-4-4-4=516$.
6. Note that $\frac{m+4}{m^{2}+7}$ is in lowest term if and only of $\frac{m^{2}+7}{m+4}$ is in lowest term. Since

$$
\frac{m^{2}+7}{m+4}=\frac{m^{2}-16}{m+4}+\frac{23}{m+4}=m-4+\frac{23}{m+4},
$$

the fraction is in lowest term except when $m+4$ is a multiple of 23 . Since m may be equal to $1,2, \ldots, 1000$, we shall count the number of multiples of 23 from 5 to 1004 . The first one is $23=23 \times 1$ and the last one is $989=23 \times 43$. Hence there are 43 such multiples. It follows that the answer is $1000-43=957$.
7. As shown in the figure, let the medians $A D, B E$ and $C F$ of $\triangle A B C$ meet at the centroid G. Recall that the medians divide $\triangle A B C$ into 6 smaller triangles of equal area and that the centroid divides each median in the ratio $2: 1$.

Let $A D=9$ and $B E=12$. Then $A G=9 \times \frac{2}{3}=6$ and $B G=12 \times \frac{2}{3}=8$. Hence the area of $\triangle A B G$ is

$$
\frac{1}{2} \times A G \times B G \times \sin \angle A G B=\frac{1}{2} \times 6 \times 8 \times \sin \angle A G B=24 \sin \angle A G B \leq 24,
$$

where equality is possible when $\angle A G B=90^{\circ}$. Since the area of $\triangle A B G$ is $\frac{1}{3}$ the area of $\triangle A B C$, the largest possible area of $\triangle A B C$ is $24 \times 3=72$.
8. We have

$$
\begin{aligned}
2 x y-3 x-5 y & =k \\
x y-\frac{3}{2} x-\frac{5}{2} y & =\frac{k}{2} \\
\left(x-\frac{5}{2}\right)\left(y-\frac{3}{2}\right) & =\frac{k}{2}+\frac{15}{4} \\
(2 x-5)(2 y-3) & =2 k+15
\end{aligned}
$$

When k is a positive integer, the number of positive integral solutions to the above equation is precisely the number of positive divisors of $2 k+15$. For this number to be odd, $2 k+15$ has to be a perfect square. The smallest such k is 5 . Indeed, we can check that when $k=5$, the original equation has 3 solutions, namely, $(3,14) ;(5,4)$ and $(15,2)$.
9. Note that $B C=\frac{1}{2}, A C=\frac{\sqrt{3}}{2}, \angle Q A T=90^{\circ}, \angle Q C P=$ 150° and $R B P$ is a straight line. Then $[A Q T]=\frac{\sqrt{3}}{4} A T=[A R T]$ implies $T Q=T R$. Thus $[P R T]=[P Q T]=\frac{1}{2}[P Q R]$ $=\frac{1}{2}([A B C]+[A B R]+[B C P]+[A C Q]+[C P Q]-[A Q R])$
$=\frac{1}{2}\left(\frac{\sqrt{3}}{8}+\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{16}+\frac{3 \sqrt{3}}{16}+\frac{\sqrt{3}}{16}-\frac{\sqrt{3}}{8}\right)$

$$
=\frac{9 \sqrt{3}}{32}
$$

10. Setting $x=y=z=1$, we have $|a+b+c|=1$.

Setting $x=1$ and $y=z=0$, we have $|a|+|b|+|c|=1$.
Setting $(x, y, z)=(1,-1,0)$, we have $|a-b|+|b-c|+|c-a|=2$.
Since $|a+b+c|=|a|+|b|+|c|, a, b, c$ must be of the same sign (unless some of them is/are equal to 0). But

$$
2=|a-b|+|b-c|+|c-a| \leq(|a|+|b|)+(|b|+|c|)+(|c|+|a|)=2(|a|+|b|+|c|)=2 .
$$

The equality $|a-b|=|a|+|b|$ holds only if a and b are of opposite signs (unless some of them is/are equal to 0). Similarly, b and c have opposite signs, and c and a have opposite signs. Yet a, b, c are of the same sign. Therefore two of a, b, c must be 0 , and the other may be 1 or -1 . Hence there are 6 possibilities for (a, b, c), namely, $(\pm 1,0,0) ;(0, \pm 1,0)$ and $(0,0, \pm 1)$.
11. When n dice are thrown, the smallest possible sum obtained is n and the greatest possible sum obtained is $6 n$. The probabilities of obtaining these sums are symmetric about the middle, namely, $\frac{7 n}{2}$. In other words, the probabilities of obtaining a sum of S and obtaining a sum of $7 n-S$ are the same. (To see this, we may consider the symmetry $1 \leftrightarrow 6,2 \leftrightarrow 5,3 \leftrightarrow 4$.) Furthermore, the probability for obtaining the different possible sums increases for sums from
n to $\frac{7 n}{2}$ and decreases for sums from $\frac{7 n}{2}$ to $6 n$. Thus the same probability occurs for at most two possible sums. From the above discussions, we know that S is either equal to 2005 or $7 n-2005$. Therefore, to minimise S we should minimise n.

Since $2005=6 \times 334+1, n$ is at least 335 . Indeed, when n is $335, S$ may be equal to $7 n-2005=7(335)-2005=340$. Since 340 is smaller than 2005 , we conclude that the smallest possible value of S is 340 .
12. Let I and J be the centres of $A B C D$ and $E F G H$ respectively, with the orientation as shown. Let $A B$ meet $E H$ at $N, B C$ meet $G H$ at M with $H M=x$ and $H N=y$. Let also K be a point such that $I K / / A B$ and $J K / / E H$. Note that $I K=\frac{1}{2}+\frac{1}{2}-x=1-x$, and similarly $J K=1-y$. Since $x y=\frac{1}{16}$, we have

$$
\begin{aligned}
I J^{2} & =I K^{2}+J K^{2} \\
& =(1-x)^{2}+(1-y)^{2} \\
& =x^{2}+y^{2}-2(x+y)+2 \\
& =x^{2}+y^{2}+2 x y-2 x y-2(x+y)+2 \\
& =(x+y)^{2}-2\left(\frac{1}{16}\right)-2(x+y)+2 \\
& =(x+y)^{2}-2(x+y)+\frac{15}{8} \\
& =(x+y-1)^{2}+\frac{7}{8}
\end{aligned}
$$

Hence the minimum value of $I J$ is $\sqrt{\frac{7}{8}}=\frac{\sqrt{14}}{4}$, which occurs when $x+y=1$ and $x y=\frac{1}{16}$, i.e. $\{x, y\}=\left\{\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4}\right\}$.
13. Suppose the ant starts at $(0,0,0)$ and stops at $(1,1,1)$. In each step, the ant changes exactly one of the x-, y - or z - coordinate. The change is uniquely determined: either from 0 to 1 or from 1 to 0 . Also, the number of times of changing each coordinate is odd. Hence the number of changes in the three coordinates may be 5-1-1 or 3-3-1 (up to permutations). It follows that the answer is $3 \times C_{5}^{7}+3 \times C_{3}^{7} \times C_{1}^{4}=546$.
14. We first show that student 333 is a 'good student'. Divide the 997 students (all except students 333,666 and 999) into the following 498 sets:

$$
\{1,2,4, \ldots\},\{3,6,12, \ldots\},\{5,10,20, \ldots\}, \ldots,\{331,662\},\{335,670\}, \ldots,\{995\},\{997\}
$$

Now consider a group of 500 students containing student 333 . If either student 666 or 999 is in the group, then it is a 'good group'. Otherwise, the other 499 students of the group come from the above 498 sets, and the pigeon-hole principle asserts that two of them come from the same set. For any two students coming from the same set, one must have a student number which divides the other's. It follows that this must be a 'good group', and hence student 333 is a 'good student'.

Finally we show that students 334 to 1000 are not 'good students'. Clearly, students 501 to 1000 form a 'bad group', and hence students 501 to 1000 are not 'good students'. Now consider the group formed by the following 500 students:

$$
334,335, \ldots, 667,669,671,673,997,999 .
$$

This group consists of students 334 to 667 and all odd-numbered students from 669 to 999 . It is easy to see that these students form a 'bad group', because for $334 \leq n \leq 500$, student n is in the group but student $2 n$ is not, and $3 n$ already exceeds 1000 . For $n \geq 501,2 n$ already exceeds 1000. Hence we can't find two students for which the student number of one divides that of another. It follows that this is a 'bad group', and hence students 334 to 500 are not 'good students'. Consequently, the answer is 333 .
15. Note that $\triangle A B C$ and $\triangle A C D$ are equilateral. Rotate $\triangle A C P$ clockwise through 60° about C to $\triangle D C Q$. Note that $\triangle P C Q$ is equilateral and hence $A P Q$ is a straight line. Also, we have $\triangle A Q C \cong \triangle B P C$. Since $\angle A P C+\angle A B C=180^{\circ} \quad, \quad A B C P$ is a cyclic quadrilateral. Hence $\angle D Q P=\angle A P B=\angle A C B=60^{\circ}$. Let $A P=x$ and $C P=y$. Then

$$
3=B P=A Q=A P+P Q=x+y .
$$

On the other hand, applying cosine law in $\Delta D Q P$ gives $2^{2}=x^{2}+y^{2}-2 x y \cos 60^{\circ}$. These two equations give $x^{2}+y^{2}+2 x y=9$ and $x^{2}+y^{2}-x y=4$ respectively. Thus $x y=\frac{5}{3}$ and hence $x^{2}+y^{2}-2 x y=4-\frac{5}{3}=\frac{7}{3}$. Thus $(x-y)^{2}=\frac{3}{7}$, or $(x-y)=\sqrt{\frac{7}{3}}$, i.e. the difference between the lengths of $A P$ and $C P$ is $\sqrt{\frac{7}{3}}=\frac{\sqrt{21}}{3}$.
16. Since n leaves a remainder of 502 when divided by 802 , we may write $n=802 k+502$ for some integer k. Let $k=5 h+r$ for some integers h and r such that $0 \leq r \leq 4$. Then we have

$$
n=802(5 h+r)+502=2005(2 h)+(802 r+502) .
$$

Setting $r=0,1,2,3,4$ respectively, we see that the remainders when n is divided by 2005 are $502,1304,101,903$ and 1705 respectively. Finally, it is indeed possible for the remainder to be 101. The reason is as follows. According to the question, we know that $n+300$ is divisible by both 902 and 702, and hence by their L.C.M. (say L). Since L and 2005 are relatively prime, the Chinese remainder theorem asserts that there exists a positive integer n which is congruent to -300 modulo L and to 101 modulo 2005. It follows that the answer is 101 .
17. Let a_{n} denote the number held by children n. Since the sum of the numbers of any 2005 consecutive children is equal to 2005, we have $a_{n}=a_{n+2005}$ for all n, where the index is taken modulo 5555. In particular, $a_{0}=a_{2005 k}$ for all positive integers k. Since $(2005,5555)=5$, there exists a positive integer k such that $2005 k \equiv 5(\bmod 5555)$. Hence $a_{0}=a_{5}$, and in general $a_{n}=a_{n+5}$ for all positive integers n. Therefore the sum of the numbers of any 5 consecutive children is the same, and should be equal to $2005 \times \frac{5}{2005}=5$. In particular, since $\{1,12,123$, 1234, 5555\} form a complete residue system modulo 5, we must have $a_{1}+a_{12}+a_{123}+a_{1234}+a_{5555}=5$, and hence the answer is $5-1-21-321-4321=-4659$.
18. Note that

$$
r-\frac{1}{r}=\frac{a(b-c)}{b(c-a)}-\frac{c(b-a)}{b(c-a)}=\frac{a b-a c-c b+c a}{b(c-a)}=\frac{b(a-c)}{b(c-a)}=-1 .
$$

Hence $r+1 \frac{1}{r}=0$, i.e. $r^{2}+r-1=0$. Solving, we get $r=\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2}$. Since $r>0$, we take the positive root to get $r=\frac{\sqrt{5}-1}{2}$.
19. Note that $B_{n}=\left(l_{1}+l_{2}+l_{3}+\cdots+l_{n}, 0\right)$. Set $S_{n}=l_{1}+l_{2}+\cdots+l_{n}$. The equation of $B_{n-1} A_{n}$ is $y=\sqrt{3}\left(x-S_{n-1}\right)$. Hence the y-coordinate of A_{n} satisfies

$$
y_{n}=\sqrt{3}\left(y_{n}{ }^{2}-S_{n-1}\right) .
$$

Solving under the condition $y_{n}>0$, we get

$$
y_{n}=\frac{1+\sqrt{1+12 S_{n-1}}}{2 \sqrt{3}}
$$

Since $l_{n}=\frac{y_{n}}{\sin 60^{\circ}}$, we have

$$
\frac{\sqrt{3}}{2} l_{n}=\frac{1+\sqrt{1+12 S_{n-1}}}{2 \sqrt{3}}
$$

i.e. $\left(3 l_{n}-1\right)^{2}=1+12 S_{n-1}$. Upon simplification, we have
and hence

$$
\begin{align*}
& 3 l_{n}^{2}-2 l_{n}=4 S_{n-1} \tag{1}\\
& 3 l_{n+1}^{2}-2 l_{n+1}=4 S_{n} \tag{2}
\end{align*}
$$

$$
\text { (2)-(1): } \begin{aligned}
3\left(l_{n+1}^{2}-l_{n}^{2}\right)-2\left(l_{n+1}-l_{n}\right) & =4\left(S_{n}-S_{n-1}\right) \\
3\left(l_{n+1}+l_{n}\right)\left(l_{n+1}-l_{n}\right)-2\left(l_{n+1}-l_{n}\right) & =4 l_{n} \\
3\left(l_{n+1}+l_{n}\right)\left(l_{n+1}-l_{n}\right)-2\left(l_{n+1}+l_{n}\right) & =0
\end{aligned}
$$

Since $l_{n} \neq l_{n+1}$, we have

$$
l_{n+1}-l_{n}=\frac{2}{3}
$$

Thus $\left\{l_{n}\right\}$ is an arithmetic sequence with common difference $\frac{2}{3}$. Furthermore,

$$
\frac{\sqrt{3}}{2} l_{1}=\frac{1+\sqrt{1+12 S_{0}}}{2 \sqrt{3}}
$$

where S_{0} is taken to be zero. This gives $l_{1}=\frac{2}{3}$. It follows that

$$
l_{1}+l_{2}+\cdots+l_{2005}=\frac{2}{3}(1+2+\cdots 2005)=\frac{2}{3} \cdot \frac{2005 \cdot 2006}{2}=\frac{4022030}{3} .
$$

Remark. The condition that B_{1}, B_{2}, \ldots are distinct is missing in the original question. This is necessary to ensure that $l_{n} \neq l_{n+1}$ so that we can cancel out the term $l_{n+1}-l_{n}$.
20. Applying the product-to-sum formula, we have

$$
\begin{aligned}
\sin B & =2005 \cos (A+B) \sin A \\
& =\frac{2005}{2}[\sin (2 A+B) \sin (-B)] \\
\frac{2007}{2} \sin B & =\frac{2005}{2} \sin (2 A+B) \\
\sin B & =\frac{2005}{2007} \sin (2 A+B)
\end{aligned}
$$

Hence $\sin B \leq \frac{2005}{2007}$, and so $\tan B \leq \frac{2005}{\sqrt{2007^{2}-2005^{2}}}=\frac{2005}{2 \sqrt{2006}}=\frac{2005 \sqrt{2006}}{4012}$. Equality is possible when $\sin (2 A+B)=1$, i.e. when $2 A+B$ is a right angle.

